
Research in Industrial Projects for Students

Sponsor

Aquatic

Final Report

Memory-Bound Elastic Net Over Dense Matrices
with Applications in Quantitative Trading

Student Members

Ben Young (Project Manager), Case Western Reserve University,

bmy11@case.edu

Atanas Dinev, Princeton University

Jacob Feitelberg, Johns Hopkins University

Gerson C. Kroiz, University of Maryland, Baltimore County

Academic Mentor

Arash Vahabpour, vahabpour@ucla.edu

Sponsoring Mentors

Dan Shiber, d.shiber@aquatic.com

August 19, 2020

This project was supported by Aquatic Group and by NSF Grant 1440415

Abstract

Quantitative analysis of U.S equity trading frequently involves processing large datasets
whose predictive features often have very weak correlations with their target variables. One
common method for regression analysis in quantitative trading is elastic net, a regularized
form of least squares estimation. This project aims to solve elastic net using limited amounts
of computational power. To overcome memory limitations when processing arbitrarily large
data, we implement matrix batching methods whereby correlations between features are
calculated per batch and combined into an overall result. Similarly, we introduce MiniCD,
a general framework to estimate coefficients across subsets of samples and combine them
into a prediction for the whole input. We compare several methods of ensembling estimated
batch coefficients. We also explore several strategies to speed up Coordinate Descent. We
compare cyclic, random, greedy, and adaptive methods for choosing update axes. We
explore computationally cheap ways to determine convergence and several applications of
a warm start. We study the runtime effect of reducing iterations to convergence via data
preconditioning. Our improvements achieve significant speedups relative to and can process
larger datasets than out-of-the-box elastic net solvers such as Python’s Sci-Kit Learn.

Key Words: Elastic Net, Coordinate Descent, Stochastic Gradient Descent, Ensembling
methods, Memory-Bound Optimization

3

Acknowledgments

We would first like to acknowledge the support from the Aquatic team, lead
by our sponsor mentor Dr. Dan Shiber. Throughout the project, Dr. Shiber
provided insightful comments on concepts to study and the datasets used in
our project from Aquatic. We would also like to thank the following members
from Aquatic who occasionally joined our weekly meetings with Dr. Shiber
and provided insightful comments on our work: Marco Santoli and Stefano
Mosso. We also wanted to acknowledge the immense support from our academic
mentor, Arash Vahabpour from UCLA. Special thanks to Dr. Susana Serna, the
IPAM RIPS Program Director and the remaining staff of the RIPS program at
UCLA for making this opportunity possible despite the COVID-19 pandemic.

5

Contents

Abstract 3

Acknowledgments 5

List of Figures 11

List of Tables 13

1 Introduction 15
1.1 Problem and Motivation . 15
1.2 Approach . 15
1.3 Report Overview . 16

2 Mathematical Background 17
2.1 Mathematical Optimization . 17
2.2 Least Squares Regression . 17
2.3 Lasso and General Penalized Least Squares Regression 18
2.4 Elastic Net . 19
2.5 Coordinate Descent . 19
2.6 Stochastic Gradient Descent . 20
2.7 Determining Convergence through the Duality Gap 21
2.8 Iteration Complexity of Coordinate Descent 23
2.9 Data Statistical Properties and Synthesis 24

3 Coordinate Descent Optimization Methods without Accuracy Loss 27
3.1 Prior Related Work . 27
3.2 Feature Choice Rules . 29
3.3 Update Rules . 32
3.4 Front Heavy Covariance Method . 34
3.5 Numerical Linear Algebra . 35
3.6 Thresholding Rules . 35
3.7 Disk I/O . 35
3.8 Preconditioning X . 36
3.9 Warm Start . 43

4 Coordinate Descent Optimization Methods with Accuracy Loss 45
4.1 Computer Precision . 45
4.2 Gram Matrix Estimation . 45
4.3 MiniCD and ensembling methods . 46
4.4 Ensemble Methods . 51

7

4.5 Early Stopping . 55

5 Results 57
5.1 Hardware and Data Specifications . 57
5.2 Parameter Study for λ1 and λ2 values . 57
5.3 MiniCD exploratory data analysis . 58
5.4 Study of Ensembling Methods . 62
5.5 Early Stopping Study . 68
5.6 Study of Feature Choice Methods . 68
5.7 Comparison of Naive and Covariance Update Rules 71
5.8 Front Heavy Covariance CD vs Standard Covariance CD 71
5.9 Thresholding . 72
5.10 Loading Data Studies . 72
5.11 Lower Precision Studies . 73
5.12 Gram Matrix Estimation Study . 74
5.13 Preconditioning Study . 75
5.14 Warm Start Study . 76
5.15 Comparison with Scikit-Learn Elastic Net 76

6 Conclusions 77

7 Recommendations for Future Work 81

A Tables from Chapter 5 85

B Abbreviations 89

Selected Bibliography Including Cited Works 91

8

List of Algorithms

1 Basic CD . 20
2 Basic SGD . 20
3 ACF probability update . 31
4 Front Heavy Covariance Method . 34
5 MiniCD . 48
6 Threshold voting . 52
7 Tree Voting Algorithm . 54

9

List of Figures

2.1 Comparison of lasso and ridge penalties in one dimension 19

3.1 CD on correlated and uncorrelated features 37
3.2 Subgradients of |x| at 0 . 40
3.3 Subgradients of |x− 1|+ | − 2x+ 1| at 1 . 41

4.1 Mean and ground truth magnitude of active features 50
4.2 6 highest-magnitude features in Large dataset 51
4.3 Percent active vs coefficient magnitude . 53
4.4 Tree voting schematic . 55

5.1 Effect of λ1 and λ2 on solution sparsity . 59
5.2 Active features across days for Large dataset 60
5.3 Estimate vs MSE for different batch sizes 60
5.4 Estimate vs support accuracy for different batch sizes 61
5.5 Support accuracy across batch sizes for various c 61
5.6 Trade off between precision and recall for m = 100 64
5.7 ROC curve for m = 100 . 65
5.8 Plots of accuracy and time for Tree voting voting 66
5.9 Plots of accuracy and time for threshold voting 66
5.10 Plots of accuracy and time for tree voting 67
5.11 Convergence study of feature selection methods 70
5.12 Thresholding value vs cross-validation loss. 72

11

List of Tables

5.1 Number of active features for varying number of batches and λ1 and λ2 by
multiplier α for tree voting, and tree voting 62

5.2 Study of optimal hybrid configuration . 69
5.3 Performance study of numerical linear algebra with various levels of precision 73
5.4 Performance study of precision impact on CD 73
5.5 Runtime and accuracy effects of Gram matrix estimation 74
5.6 Preconditioning performance study . 76

A.1 Proportion of nonzero coefficients for various λ1 and λ2 in Medium dataset 85
A.2 Proportion of nonzero coefficients for various λ1 and λ2 in Large dataset . . 85
A.3 Number of active features for varying thesholds and batch sizes, and tree

voting, Large dataset . 85
A.4 Support precision for varying thesholds and batch sizes, and tree voting,

Large dataset . 86
A.5 Support recall for varying thesholds and batch sizes, and tree voting, Large

dataset . 86
A.6 MSEw−MSEw∗

(|y|)2
for varying thresholds and batch sizes, and tree voting,Large

dataset . 86
A.7 Relative distance from true weights for varying thresholds and batch sizes,

and tree voting, Large dataset . 86

A.8 (w−w∗)T Σ(w−w∗)
MSEw∗ for varying thresholds and batch sizes, and tree voting, Large

dataset . 86
A.9 Time to run threshold voting for varying thresholds and batch sizes, and tree

voting, Large dataset . 87
A.10 Runtime comparison of covariance and naive update methods 87
A.11 Runtime comparison of front heavy and standard covariance methods . . . 87
A.12 Runtime comparison of methods for loading and calculating Gram matrix . 87
A.13 Performance study of warm start for rolling windows 87
A.14 Performance study of warm start for distributed network 88

13

Chapter 1

Introduction

Founded in 2018 by Jonathan Graham, Aquatic is a startup quantitative trading and in-
vestment company based in Chicago. Their small and modernized team of researchers and
engineers is building a fully automated investment engine based on a proprietary predic-
tion machine. While Aquatic is currently testing their machine on small stock trades, their
prediction machine will start actively trading stocks within the fourth quarter (Q4) of 2020.

1.1 Problem and Motivation

This project, sponsored by Aquatic, aims to develop a forecasting model of equity trading
of U.S. stocks based on state-of-the-art techniques such as coordinate descent (CD) and
stochastic gradient descent (SGD). In a broad sense, quantitative trading refers to using
statistical models to predict stock price fluctuations. A quantitative trading firm uses its
models to make profits - if they predict a stock’s price will rise, they will buy it. If they
predict a stock’s price will fall, they will sell it. In general financial data has a very low signal-
to-noise ratio, so even the best models find only weak correlations. A model may correctly
guess the direction of a stock’s price only 51% of the time, but if it makes a lot of trades,
this small advantage can add up. Thus models should be able to make predictions over very
short time frames. Our project, therefore, prioritizes improving algorithms’ runtime over
improving their accuracy.

Our research also focuses on efficiently handling large datasets. Quantitative trading
models aim to determine a linear fit between hundreds or thousands of possible factors and
return on investment. Within the U.S., there are around 3,000 various equities. Keeping
track of frequent changes to stock values, volumes, and other characteristics over long
periods often leads to large data sets. Many companies in this field, such as Aquatic,
use high-end computer clusters to predict and execute trades to tackle this problem. We
address the problem with limited computing power in our project to show that the problem
can be solved feasibly with less computing resources. With our work, Aquatic will have
the resources to replicate the designs we develop on their computing clusters with larger
datasets to improve their current prediction machine.

1.2 Approach

Our project aims to develop an optimized prediction model using lower amounts of com-
putation power. We start with basic implementations of optimizations algorithms such as

15

CD and SGD with Elastic Net as our regressor. Using these, we delve into various methods
of improving the algorithm within the scopes of computational performance and accuracy.
We also address ways of solving the memory and disk-io bounds of the quantitative trading
problem on the limited hardware.

1.3 Report Overview

The remainder of this report is structured as follows. Chapter 2 discusses the general
mathematical background of our problem and the optimization algorithms utilized. In
Chapters 3, we discuss various techniques without an influence on accuracy that we looked
into and implemented with aims to optimize the basic algorithms explained in the previous
chapter. Chapter 4 discusses further optimization techniques that induce some accuracy
loss in the result of CD. Chapter 5 shows preliminary results of each of the methods we
explored. Based on the results, Chapter 6 provides general conclusions followed by future
work in Chapter 7.

16

Chapter 2

Mathematical Background

2.1 Mathematical Optimization

Mathematical optimization is the selection of the best element from a set of available alter-
natives. Optimization problems arise in all quantitative disciplines, from computer science,
engineering to operations research and economics. The development of solution methods
has been of interest to mathematicians for centuries. In the simplest case, an optimization
problem consists of maximizing or minimizing a real function by systematically choosing
input values from within an allowed set and computing the function’s value. More gener-
ally, optimization can be interpreted as finding the “best available” value of some objective
function given a defined domain (or input), including a variety of functions and different
types of domains.

2.2 Least Squares Regression

To introduce this report’s optimization problem, consider a simple example. Say we want
to predict the price of Apple’s stock (the target) and that we have identified p = 3 possible
predictors (or features): iPhone sales, MacBook sales, and Samsung’s stock price. We have
measured each feature value and Apple’s stock price at each of N points in time. Thus we
have an N × p matrix X storing the p feature values at each of N times and a N -length
vector y storing Apple’s stock prices at each time.

We assume that Apple’s stock price (y) can be modeled as a linear combination of the
feature values - that is

Apple’s stock price ≈ β1 ·(iPhone sales)+β2 ·(MacBook sales)+β3 ·(Samsung’s stock price)

for coefficients β1, β2, β3. In general, since the values of feature i are stored in xi - the ith
column of X -

y ≈
p∑
i=1

βixi.

If we let β = (β1, . . . , βp), this reduces to the matrix multiplication

y ≈ Xβ

The goal of the optimization problem is to determine β such that Xβ approximates y as
closely as possible. The most straightforward measure of an approximation’s accuracy is

17

the squared Euclidian distance between Xβ and y. Thus the solution to the problem is β̂,
where

β̂ = argmin
β
‖Xβ − y‖22

Since we’re minimizing only the sum of squared differences between Xβ and y, this is called
the ordinary least squares (OLS) problem.

2.3 Lasso and General Penalized Least Squares

Regression

Ordinary least squares suffers from several problems [15]. First, due to its lack of restrictions
on β values, it tends towards high variance and overfits to noise in the data. Second, when
p is large, we can improve the model’s interpretability and simplicity by selecting a subset
of features with the strongest effects and setting the rest’s weights to 0. OLS, however,
generally predicts every weight to be nonzero.

Ridge regression, a modification to OLS, addresses the first problem. Ridge regression
adds a term penalizing the L2 norm of β, giving the following formula:

β̂ = argmin
β

1

2N
‖Xβ − y‖22 + λ‖β‖22

where

‖β‖22 =

p∑
i=1

β2
i .

The L2 norm penalty term encourages the optimizer to shrink the values of β. By restricting
the values of β in this way, we reduce the model’s ability to overfit to small variations in the
training data. But the smooth L2 norm does not set any values in β to 0. To address this,
the “least absolute shrinkage and selection operator” (lasso), proposed in [15], uses the L1

norm of β instead, so the problem becomes

β̂ = argmin
β

1

2N
‖Xβ − y‖22 + λ‖β‖1

where

‖β‖1 =

p∑
i=1

|βi|.

Unlike ridge’s L2 penalty, lasso’s L1 penalty shrinks small weights to 0. To see the intuition
behind this, consider Figure 2.1 comparing the L1 norm |x| and L2 norm x2 in one dimension.
The lasso penalty always keeps its nonsmooth ‘V’ shape at any scale, but zooming in on
the ridge penalty, at 0, it flattens out to a line. Thus, the ridge penalty does not provide a
sufficient penalty for weights near 0 to reduce them to exactly 0, whereas the lasso penalty
does.

The L1 norm also shrinks the weights, so the lasso addresses both of OLS’s above
problems. However, the L1 norm doesn’t ’group’ highly correlated features by assigning
them similar weights. Instead, it assigns one feature from the group a strong coefficient
and leaves the others out. The resulting model is then highly sensitive to noise in the
feature lasso selects to represent the whole group. Another drawback of this anti-grouping
behavior is a decline in the model’s interpretability: the zeroed features could have a strong
correlation with the target, but it appears as though they have little correlation.

18

(a) |x| (b) x2

Figure 2.1: Comparison of lasso and ridge penalties in one dimension

2.4 Elastic Net

To address these issues with ridge regression and the lasso, elastic net was proposed in [19].
The elastic net’s penalty term is a weighted sum of the L1 and L2 norms, so it can be
viewed as a combination of ridge and lasso:

β̂ = argmin
β

1

2N
‖Xβ − y‖22 + λ1‖β‖1 +

1

2
λ2‖β‖22 (2.1)

λ1 and λ2 are scalar parameters whose values determine the relative influence of the ridge
and lasso penalties. Elastic net avoids the drawbacks of both methods while keeping their
benefits [19]. Assuming λ2 > 0, the presence of the L2 norm eliminates the lasso’s anti-
grouping problem. Furthermore, assuming λ1 > 0, the overall penalty in nonsmooth so the
elastic net inherits the lasso’s desirable feature selection property.

Since all three terms of the argument in equation (2.1) are strictly convex, elastic net is a
strictly convex optimization problem. Thus, the global minimum is the only local minimum,
so algorithms don’t have to worry about getting stuck in non-optimal local minima.

2.5 Coordinate Descent

CD is an optimization algorithm that successively minimizes along coordinate directions to
find the minimum of a function. At each iteration, the algorithm determines a coordinate
or coordinate block via a coordinate selection rule, then minimizes over the corresponding
coordinate hyperplane while fixing all other coordinates or coordinate blocks. CD is appli-
cable in both differentiable and subdifferentiable contexts. The algorithm is based on the
idea that the minimization of a multivariable function f(β) for β ∈ Rn can be achieved
by minimizing it along one direction at a time. For the remainder of this report, ik is the
coordinate selected based on iteration k, βik is the ikth coordinate of the β vector, and βk

is the predicted β for the kth iteration. In a general framework each step of CD chooses
an index ik ∈ {1, 2, . . . , n}, and updates βik to βkik by a certain scheme depending on βk−1

and f , while keeping βj unchanged for all j 6= ik. The update step consists of adjusting the
ik-th component of β in the opposite direction of the gradient ∇f with a step size of αk.
The process is repeated until a termination condition is satisfied.

The basic underlying problem in all settings is the following unconstrained optimization
problem:

min
xβ∈Rn

f(β)

where f : Rn → R is continuous. Algorithm 1 from [17] describes coordinate descent:

19

Algorithm 1 Basic CD

1: set k ←− 0 and choose x0 ∈ Rn

2: repeat
3: Choose index ik ∈ {1, 2, ..., n}
4: βk+1 ←− βk − αk[∇f(βk)]ikeik for some αk > 0
5: k ←− k + 1
6: until termination test satisfied

Different variants of the Algorithm 1 exist, incorporating modifications for the update
step such as block coordinate minimization, proximal point update, prox-linear update, and
extrapolation, described in [12]. Variants for choosing the index (or block) to update at
each step include cyclic, randomized, and greedy variants such as Gauss-Southwell rules.
In practice, these various methods can have different performance based on the data’s
characteristics, making the exploration of such methods a central part of our research.

2.6 Stochastic Gradient Descent

SGD is an iterative method to optimize an objective function by estimating the gradient
from a subset of the data and using the estimated gradient to apply a gradient descent
method. The purpose of estimating the gradient is the reduce the computational burden of
calculating the gradient if the dataset is large. SGD converges to a global or local minimum,
almost surely when the objective function is convex. The problem that SGD solves is the
following:

min
w

Q(w) :=
1

n

n∑
i=1

Qi(w)

where Q : Rn → R and w ∈ Rn. To compute the full gradient for the above problem, one
would have to compute

∇Q(w) =
1

n

n∑
i=1

∇Qi(w)

by processing every training example in the dataset. This is often infeasible, and we can
instead sample either one, or a small batch of loss functionsQi, called mini-batch, to compute
a sub-sampled gradient in place of the full gradient. For example, this can be achieved by
randomly shuffling the training set. Algorithm 2 from [18] describes the discussed procedure.

Algorithm 2 Basic SGD

1: set k ←− 0, choose w0 ∈ Rn, and choose learning rate η
2: repeat
3: Randomly shuffle examples in the training set
4: for i = 1, 2, ..., n do
5: wk+1 := wk − η∇Qi(w)
6: end for
7: k ←− k + 1
8: until termination test satisfied

20

SGD is a useful tool for estimating the gradient when using the full gradient is compu-
tationally inefficient. Since the dataset involved in our research’s central problem is large,
SGD is a good candidate for our exploration.

2.7 Determining Convergence through the Duality

Gap

The main problem of a convex optimization problem is referred to as the primal problem.
There exists a companion problem to the primal called the dual problem, typically the
Lagrangian dual problem. For convex problems, the standard primal form is defined as:

min
β

f0(β)

s.t. fi(β) ≤ 0 for i = 1, 2, ...,m,

hj(β) = 0 for j = 1, 2, ..., r

where m and r are integers ≥ 1 that depend on the specific problem. The standard La-
grangian dual function is defined as:

L(β, λ, ν) = f0(β) +
∑

λifi(β) +
∑

νjhj(β)

The standard dual problem is defined as:

max
ν

inf
β,z

L(β, λ, ν)

s.t. λ ≥ 0.

The duality gap is the difference between the primal problem’s value and the dual problem’s
value. An important property of strongly convex problems is called strong duality. If strong
duality holds, then the solution is optimal if and only if the duality gap is equal to 0.

In the case of least squares with the elastic net regularizer, our problem is the same as
given in Section 2.4:

min
β

1

2N
‖y −Xβ‖22 + λ1‖β‖1 + λ2‖β‖22

We can define a new variable z = Xβ − y, to create an equivalent problem as the primal
given in the first section, as described in [6],

min
β

zT z

2N
+ λ1‖β‖1 + λ2‖β‖22

s.t. z = y −Xβ.

We can associate the dual variable νi ∈ R, i = 1, ..., p. Thus, the Lagrangian becomes

L(β, z, ν) =
zT z

2N
+ λ1‖β‖1 + λ2‖β‖22 + νT (y −Xβ − z).

To determine infβ,z L(β, z, ν), we can split it up as follows:

inf
β,z

L(β, z, ν) = inf
β

inf
z
L(β, z, ν).

21

Now, infz L(β, z, ν) can be calculated by setting the partial gradient of L(β, z, ν) with
respect to z to ~0:

∂L(β, z, ν)

∂z
=

z

N
− ν = ~0

Thus, z = nν. So, plugging it back into the equation, our updated problem is

inf
β
L(β, z, ν) =

N

2
νT ν + λ1‖β‖1 + λ2‖β‖22 + νT (y −Xβ − nν).

Now, we can solve this problem by setting the partial gradient of L(β, z, ν) with respect to
β to ~0:

∂L(β, z, ν)

∂β
= λ1

∂‖β‖1
∂β

+ 2λ2β −XT ν = ~0.

∂‖β‖1
∂β is not defined everywhere and is given as follows:

∂‖β‖1
∂βi

=

{
sign(βi), βi 6= 0

[−1, 1], βi = 0
for i = 1, ..., p.

L(β, z, ν) must reach a minimum by the constraints of the duality problem. In order
for this to happen, it has been proven in [6] that for L(β, z, ν) to obtain an optimum,∥∥2λ2β −XT ν

∥∥
∞ ≤ λ1. Therefore, this part of L(β, z, ν) has an optimum of 0. Simplifying,

the optimum becomes

inf
β,z

L(β, z, ν) = νT y − N

2
νT ν.

The dual function is then

inf
β,z

L(β, z, ν) =

{
νT y − N

2 ν
T ν,

∥∥2λ2β −XT ν
∥∥
∞ ≤ λ1

−∞, otherwise.

The Lagrange dual problem is then given by

max
ν

G(ν)

s.t.
∥∥2λ2β −XT ν

∥∥
∞ ≤ λ1

where the dual objective G(ν) is

G(ν) = νT y − N

2
νT ν.

The duality gap is then given by

η =
‖Xβ − y‖22

2N
+ λ1‖β‖1 + λ2‖β‖22 −G(ν)

It was shown in [6] that we can derive a feasible dual variable ν for an arbitrary β with the
following formula:

ν = 2s(Xβ − y)

s =
Nλ1

‖(2XT (Xβ − y))‖∞
.

Strong duality holds for least squares with the elastic net regularizer and, thus, we can use
the duality gap as a certificate of optimality as shown in [14].

22

2.8 Iteration Complexity of Coordinate Descent

Iteration complexity is how the minimum and the maximum number of iterations for a
given problem changes with different inputs. For gradient descent algorithms, this is well
understood. For CD, however, iteration complexity is not as well researched and still has
room for improvement. The iteration bounds for cyclic and random with replacement CD
are given in this section. First, we will discuss some fundamental ideas about strongly
convex functions.

2.8.1 Strongly Convex Functions

General Strongly Convex Function

For any twice differentiable function f(x), it is called µ-strongly convex if

∇2f(x) � µI.

Let f(x) = xTAx. Then, ∇2f(x) = 2AT . So, f(x) is µ-strongly convex if all the eigenvalues
of A are greater than or equal to µ. Another important property of strongly convex functions
is that if functions f(x), g(x), and h(x) are defined as

h(x) = f(x) + g(x),

where f(x) is strongly convex and g(x) is convex, then h(x) is strongly convex.

Least Squares with Elastic Net

In our problem, we can define F (x) as

F (x) = f(x) + Ψ(x)

where

f(x) =
1

2N
‖Xβ − y‖22 =

1

2N

(
βTXTXβ − 2βTXT y + yT y

)
and

Ψ(x) = λ1‖β‖1 + λ1‖β‖22.

So, the strong convexity parameter for f(x) is the minimum eigenvalue of XTX
N and the

strong convexity parameter for Ψ(x) is 2λ2.

2.8.2 Cyclic Coordinate Descent

Our analysis of the iteration complexity is based on the block CD iteration complexity
analysis in [7]. In [7], is has been proven that for coordinate descent on a strongly convex
optimization problem, we need⌈

µLµmin + 16L2 log2(3p)

µLµmin

log
(εinit

ε

)⌉
iterations. Lµmin is defined in [7] as

Lµmin = min
i∈{1,...,p}

Li + µi

where p is the number of features. The rest of the variables used are described as follows:

23

1. Li is the Lipschitz constant of feature i. Li is greater than or equal to the spectral
norm of XT

i Xi.

2. µi is the strong convexity constant of feature i.

3. L is the Lipschitz constant of the whole problem. L is greater than or equal to the
spectral norm of XTX.

4. µ is the strong convexity constant of the whole problem.

5. ε is the desired error.

6. εinit is the initial error in objective function value.

2.8.3 Random Coordinate Descent

It was proven in [11] that to reach an error of ε with probability 1− ρ, random coordinate
descent methods takes k iterations where

k ≥ p 1 + µΨ

µf + µΨ
log

(
εinit

ερ

)
where p is the number of features, µΨ is the strong convexity parameter for the regularizer
(in our case, elastic net), µf is the strong convexity parameter for loss function (in our
case squared loss), and εinit is the initial error in objective function value. We do not know
what εinit is without knowing the optimal solution. However, it can be overestimated as the
duality gap.

2.9 Data Statistical Properties and Synthesis

Aquatic provided us with three datasets: “Small,” “Medium,” and “Large.” They have
p = 10, p = 162, and p = 1768, respectively, and all three have N ≈ 17 · 106. To test our
algorithms’ robustness, we also implemented routines to generate random data mimicking
Aquatic’s datasets. Our generated data inherited the following statistical properties from
Aquatic’s real data:

1. Each column j of X is sampled from a normal distribution with mean µj = 0 and
standard deviation σj = 1 (denoted N (0, 1)). Thus the features are ’standardized’ in
the sense that, for each feature j,

N∑
i=1

xij = 0 and
N∑
i=1

x2
ij = 1.

2. For features a, b, and corresponding columns Xa and Xb of X, the correlation between
them is

rab = xa · xb.

Around 15% of features fall into correlated blocks. Each pair of features a, b within a
correlated block have correlation coefficient rab ≈ 0.8. The remaining 85% of features
c have rcd ≈ 0 for every other feature d.

24

3. The distribution of Pearson correlations rjy between each feature j and the target y
have mean and standard deviation 0 and 0.0075, respectively. We fit

rjy =
Cov[Xj , y]

σ(xj)σ(y)
.

Since Xj is standardized, this simplifies to∑N
i=1Xij(yi − µy)

σ(y)
.

4. The entries of the target y should have mean 0 and standard deviation 10−3.

The basic data generation procedure is as follows: first, we sample the ‘true’ weights β̂ from
a normal distribution centered at 0 with a standard deviation chosen to satisfy property 3,
as shrinking the norm of β̂ relative to the noise in y decreases the values of rjy.

Next, we initially sample X according to property 1. To achieve property 2, one specifies
ahead of time how many blocks of correlated features the dataset should have and the
number of features, on average, in each correlated block. After generating the columns of
X independently, for each block, we randomly select the specified number of features, plus
or minus 33%. Each of the selected features i (other than the first chosen) is correlated
with a random (selected without replacement) feature j in the block using the formula

Xi =
√

1− 0.82Xi + 0.82Xj .

Next we compute
y = Xβ̂ + ε

where ε is a noise vector whose magnitude is chosen with regard to p and sparsity of β̂ such
that property 4 is satisfied. X and y are inputs to the optimizer. Since we know β̂, we can
test the accuracy of the optimizer’s predicted β.

25

Chapter 3

Coordinate Descent Optimization
Methods without Accuracy Loss

3.1 Prior Related Work

Before creating our coordinate descent (CD) implementations, we looked into several re-
cently developed CD algorithms as a general guideline of possible optimizations.

3.1.1 Parallel Coordinate Descent

Across Features

One way to parallelize CD is across features, updating multiple features at a time. The
effectiveness of this method depends on the data. Suppose the columns within the data
are not correlated. In that case, the computational cost of optimizing across all the fea-
tures one after the other is equal to the computational cost of optimizing across all features
independently. However, if the features are correlated, then simultaneously updating mul-
tiple coordinates will be suboptimal, requiring more iterations. Squared loss is a partially
separable function when the feature matrix X is sparse, as shown in [12].

Distributed Parallel Coordinate Descent

For problems with large datasets, loading in all the data may be impossible, and thus we
cannot parallelize as much as we would like. A solution to this problem is the parallelize
not just across cores of an individual processor, but across nodes of a network of computers.
However, this method is not without bottlenecks. One major problem with distributed CD
is that communication speeds across nodes are much slower than within a node. Another
problem with many distributed methods is that after each iteration, the algorithm has to
synchronize the updated weights across nodes. Thus, the whole system is only as fast as
the slowest node.

Asynchronous Parallel Coordinate Descent

A solution to the problem in distributed CD and other parallel CD methods is asynchrony.
Rather than synchronizing all the updated weights after each iteration, asynchrony allows
each node to update its weight without waiting for the slowest node. This method is much
newer and relatively unstudied compared to synchronous methods. A reason for this is the

27

difficulty in analyzing convergence for asynchronous CD methods compared to synchronous
ones. However, it was shown in [12] that asynchronous methods can achieve speedups
over serial methods of 25x compared to the 4x speedup of synchronization. Proving that
asynchronous CD methods converge depends on how “stale” we are willing to let β get. In
other words, how far ahead are we willing to let one process get compared to the slower
nodes. If we let one process go too far ahead, then convergence cannot be proved. However,
if we set an upper limit on the “staleness” of β, a type of CD called “partially asynchronous”
in [17], then convergence holds.

3.1.2 Accelerated Coordinate Descent

Another method of optimizing CD algorithms is via acceleration, where the step size for
each iteration is adaptive to how far away the values of β are from the global minimum. As
described in [1], for smooth convex minimization, randomized coordinate descent methods
have convergent rates of 1/ε, where ε > 0 is an additive error. Accelerated methods of CD
result in faster convergence rates of 1/

√
ε as each iteration updates the coordinate value

based on the distance from the minimum.

One accelerated CD algorithm we looked into is accelerated, parallel, and proximal CD
(APPROX), proposed in [2]. In addition to having the advantages of parallelism described
in the previous subsections, APPROX is accelerated and is proximal. The CD method
is also proximal, allowing for implementations of the algorithm with various regressors
such as Lasso or Elastic Net. However, its convergence rate is dependent on the amount
of parallelism utilizable, and may not be appropriate for our project where the level of
parallelism achievable is extremely limited.

3.1.3 Adaptive Elastic Net

One of the most recent applications of solving elastic net via coordinate descent in quanti-
tative finance is in [13]. This application solves a different problem (index tracking) then
the problem Aquatic aims to solve. Still, the problem’s mathematical formulation is iden-
tical to the formulation discussed above, with a few added constraints. The researchers
in [13] use adaptive elastic net (Aenet), a modification to elastic net proposed in [20] in
2009. Aenet weights coordinates according to an initial estimate of β, giving it desirable
theoretical consistency properties that ordinary elastic net does not have. The study in [13]
solves the Aenet using coordinate descent and finds that the predicted weights are sparser
than those predicted by ordinary elastic net, but not significantly more accurate. Due to
the extra computational cost associated with Aenet we have not yet decided to explore it
for our problem, but it is a potential future exploration area.

3.1.4 Hybrid Coordinate Descent (Hydra)

This method, introduced in [10], utilizes parallelism at two levels: across a cluster of com-
puter nodes and parallel processing within each node. In every CD iteration, Hydra first
splits up the coordinates into random subsets, assigns each subset to a node, and then
each node updates its assigned coordinates. Hydra is a synchronous parallel CD algorithm
because, after each iteration, data is synchronized across the nodes. Hydra is similar to
other parallel CD methods but extends them to work on a distributed network. We do not
have access to a network of nodes, but can still explore distributed methods in a simulated
manner on our single machine.

28

3.2 Feature Choice Rules

Within Algorithm 1, the core of the algorithm consists of the feature selection (Line 3)
and update (Line 4) steps. Previous studies have shown optimized variations of each step.
This section looks into various methods for optimal feature selection. There are two desired
attributes to have an optimal feature selection method: low computational complexity and
high importance in the selected features. Low computational complexity leads to faster
run time, and choosing features based on update priority leads to faster convergence. The
following methods for determining ik will show various computational complexities and
feature choice importance. Each of these methods are compared against each other in
Section 5.6.

3.2.1 Basic methods

Cyclic

Cyclic based feature selection is the simplest form of determining which feature to use.

ik+1 = (k mod n) + 1, k ∈ n. (3.1)

Random with Replacement

Another method of choosing a feature is via random probability. The random with replace-
ment selection method chooses feature ik with uniform probability from {1, ..., n}.

Random without Replacement

A variant to the random with replacement feature selection method is to use random se-
lection without replacement. Thus, once ik is chosen based on a uniform probability of the
features, its probability of being chosen is 0 until all other each feature has been selected.

3.2.2 Greedy

The basic methods described in the previous section are extremely computationally efficient,
each with O(1) complexity, but are not ideal feature selection methods for convergence in
few iterations. For example:

Let β0
j = βfin

j if j 6= n where β0 is the initial guess of βfin is the vector for the global
minimum. The simpler methods may take many different feature selections before selecting
the only βn the only feature that needs an update. Hence, there is motivation to explore
other feature selection methods, such as greedy methods, that choose feature βn in fewer
iterations. Many greedy variants have large computational complexities for each iteration
by calculating the gradient-based on each feature but can select coordinates farthest away
from that global minimum.

Selecting features via Greedy rules are defined by the following equation:

ik = arg max
1≤j≤n

∥∥∥∇jf(xk−1)
∥∥∥ (3.2)

For our studies, we implemented the Gaussian-Southwell-s (GS-s) rule, one of many
greedy variants for feature selection. We chose this rule for several reasons. 1) The method
is well known and has lots of background literature to support its definitions and convergence

29

rate. 2) The GS method for Lasso regression was previously defined in [12] and is easily
adjustable for elastic net since elastic net can be derived from Lasso.

ik = arg max
1≤j≤n

gj(x
k−1) (3.3)

where

gj(x
k−1) =



∥∥∥XT
:,j(Xβ

k−1 − y)/N + λ1 + 2λ2β
k−1
j

∥∥∥ if βk−1
j > 0∥∥∥XT

:,j(Xβ
k−1 − y)/N − λ1 + 2λ2β

k−1
j

∥∥∥ if βk−1
j < 0∥∥∥shrink(XT

:,j(Xβ
k−1 − y)/N, λ1 + 2λ2β

k−1
j)

∥∥∥ if βk−1
j = 0

(3.4)

The shrink function from the equation above is defined as:

shrink(x, µ) =


x− µ if x > µ

0 if −µ ≤ x ≤ µ
x+ µ if x < −µ

(3.5)

The GS-s method results in a computational complexity of O(Np2) for each feature
selection, where N is the number of samples and p is the number of features. While this
complexity is much larger than the previous methods, it is proven in [8] that GS-s converges
in fewer iterations compared to randomized in all except a few extreme cases that don’t
apply to our constraints.

3.2.3 Hybrid

In general, through a CD algorithm, the distance between the loss function value approxi-
mated at an iteration ik and the global minimum decreases as the iteration ik increases. As
CD goes through many iterations, the update step size decreases to allow for finer adjust-
ments, and therefore, the feature selection has less of an impact on the change of the loss
function value. It is important to consider this concept when choosing an optimal feature
selection method. For example, the high cost of greedy methods may not be worthwhile for
later iterations of CD, where the maximum change of the weights shrinks in magnitude.

One way to solve this problem is by utilizing hybrid methods, where the first few iter-
ations select feature selection methods with large computational complexities, and the last
few iterations select simple feature selection methods. For example, a CD algorithm could
start with a greedy feature selection method, but alternate to a cyclic feature selection
method once the change of the weights reaches a certain tolerance. Section 5.6 looks into
studies of create an optimal hybrid method.

3.2.4 Adaptive Coordinate Frequencies

Adaptive Coordinate Frequencies (ACF) is an online feature selection method proposed in
[4] in 2013. It is a combination of the Greedy and Random with Replacement selection
methods in that it selects features probabilistically. The probability of selecting each co-
ordinate is weighted by the expected loss function decrease resulting from updating that
coordinate.

30

Let (P1, . . . , Pp) be the probabilities of selecting features 1, . . . , p on a given update
step. For example the random without replacement method samples from the uniform
distribution

(P1, . . . , Pp) =

(
1

N
, . . . ,

1

N

)
(3.6)

on every update.
ACF initializes the feature selection probabilities according to equation (3.6). Suppose

coordinate i is chosen on step t. The algorithm minimizes the loss function along coordinate
i by updating βt−1

i , the value of βi before step t, to βti . If we let

βt−1 = (β1, . . . , β
t−1
i , . . . , βp)

βt = (β1, . . . , β
t
i , . . . , βp)

then step t’s update changed the value of the loss function f by

∆ = f(βt)− f(βt−1). (3.7)

The larger ∆ is, the more progress we have made in moving the loss function towards its
optimal value. Hence if ∆ is large relative to other recent updates, we want to increase
Pi relative to the other probabilities to increase our odds of selecting coordinate i in the
future. On the other hand, if ∆ is relatively small, we want to decrease Pi, as we have not
made much progress updating along coordinate i.

Let ∆ be the (running) average of ∆ values for each step up to t. Let

Psum =

p∑
j=1

Pj .

Since P1, . . . , Pp are initialized according to equation (3.6), Psum = 1 initially. Let Pmax and
Pmin limit from above and below, respectively, the values P1, . . . , Pp. Define the notation

[
x
]Pmax

Pmin
=


Pmax x ≥ Pmax
x Pmin < x < Pmax

Pmin x ≤ Pmin

Finally, let c and η be learning rate parameters. The following algorithm introduced in [4]
updates Pi by comparing ∆ to ∆. Steps 1 and 3 of algorithm 3 increase Pi if ∆/∆ > 1 and

Algorithm 3 ACF probability update

1: Pnew ←
[

exp
{(
c
(
∆/∆− 1

))
Pi

}]Pmax

Pmin

2: Psum ← Psum + (Pnew − Pi)
3: Pi ← Pnew

4: ∆← (1− η)∆ + η∆

decrease Pi if ∆ < ∆. Step 2 changes Psum to reflect the change in Pi. Step 4 adds ∆ for
this step to the running average.

To select a feature at each step, we then sample from a discrete distribution where
the probability of selecting feature k is Pk

Psum
. As currently implemented, sampling from

the discrete distribution runs in constant time. Calculating ∆ and hence algorithm 3 is

31

O(p). Adjusting the discrete distribution to reflect the change in Pi each step requires O(p)
time. Thus ACF adds O(2p) time to each coordinate update. We are exploring alternative
methods to adjust the discrete distribution to run in O(log p) or O(1), which would reduce
ACF’s overall runtime per update to just O(p).

ACF-GPI

The choice to initialize P1, . . . , Pp as a uniform distribution is somewhat arbitrary. We
propose an alternate scheme called ACF with greedy probability initialization (ACF-GPI).
The primary drawback with the greedy scheme proposed in Section 3.2.2 is the cost of
calculating the gradient along each coordinate at every update step. Performing one such
calculation, however, is not prohibitively expensive. Thus, ACF-GPI initializes each Pk
relative to the gradient’s magnitude along coordinate k but performs the ACF feature choice
instead of the greedy feature choice at every subsequent update. This alternate initialization
gives ACF a ‘head start’ on selecting coordinates providing significant progress towards the
optimum. Specifically, for each k = 1, . . . , p, we set

gk = |∇kf(β0)|

where β0 = 0 is the initial all-zero weight vector. Then for each k initialize

Pk =
gk∑p
j=1 gj

.

3.3 Update Rules

The update rules shown here are based on those presented in [4]. Here we describe the
mathematical inner workings behind these update rules as presented in [3]. Let X = (xij)ij .
Notice that another way of writing equation (2.1) is

minβ∈Rp
1

2N

N∑
i=1

(yi − xTi β)2 + λ1||β||1 + λ2||β||22 (3.8)

Consider a coordinate decent minimization step for equation (3.8) in the coordinate j.
Suppose we have estimates for β̃l for l 6= j, and we wish to partially optimize with respect
to βj . Denote by R(β) the objective function in equation (3.8). We would like to compute
the gradient at βj = β̃j , which only exists if β̃j 6= 0. If β̃j > 0, then

∂R

∂βj

∣∣∣
β=β̃

= − 1

N

N∑
i=1

xij(yi − xTi β̃) + 2λ2βj + λ1

If β̃j < 0, then the expression is

∂R

∂βj

∣∣∣
β=β̃

= − 1

N

N∑
i=1

xij(yi − xTi β̃) + 2λ2βj − λ1

Finally if β̃j = 0, then

∂R

∂βj

∣∣∣
β=β̃

= − 1

N

N∑
i=1

xij(yi − xTi β̃) + 2λ2βj + λ1α

32

where α ∈ ∂0|βj | is the subdifferential of |βj | at 0. Simple calculus shows that the coordinate-
wise update has the form

β̃j ←
S(1

N

∑N
i=1 xij(yi − ỹi(j)), λ1)

1 + 2λ2
(3.9)

where

• ỹi(j) = β̃0 +
∑

l 6=j xilβ̃l is the fitted value excluding the contribution from xij , and

hence yi − ỹi
(j) is partial residual for fitting βj . Because of the standardization,

1
N

∑N
i=1 xij(yi − ỹi(j)) is the simple least-squares coefficient when fitting this partial

residual to xij .

• S(z, γ) is the soft-thresholding operator with value

S(z, γ) =


z − γ z > γ

0 z ∈ [−γ, γ]

z + γ z < −γ

Thus, we compute the least-squares coefficient on the partial residual, apply soft-
thresholding to take care of the lasso contribution to the penalty, and then apply a pro-
portional shrinkage for the ridge penalty. Now that we have an explicit formula for the
update rule in coordinate minimization, we consider two different update schemes, which
implement the update rule in equation (3.9).

3.3.1 Naive Updates

Looking more closely at equation (3.8), we see that

yi − ỹi(j) = yi − ŷi + xij β̃j

= ri + xij β̃j

where ŷi is the current fit of the model for observations i, and hence ri the current residual.
Thus

1

N

N∑
i=1

xij(yi − ỹi(j)) =
1

N

N∑
i=1

xijri + β̃j (3.10)

because the columns xj are standardized. The first term of the right-hand side is the gra-
dient of the loss with respect to βj . It is clear from equation (3.10) why coordinate descent
is computationally efficient. Many coefficients are zero, remain zero after thresholding, and
so nothing gets changed. Such a step costs O(N) operations - the sum to compute the
gradient. On the other hand, if a coefficient does change after thresholding, ri is changed
in O(N), and the step costs O(2N). Thus a complete cycle through all p variables costs
O(pN) operations. We refer to this as the naive algorithm since it is generally less efficient
than the covariance updating algorithm described next.

33

3.3.2 Covariance Updates

Further efficiencies can be achieved in computing the update in equation (3.9). We can
write the first term on the right (up to a factor of 1

N) as

N∑
i=1

xijri = 〈xj , y〉 −
∑

k:|β̃k|>0

〈xj , xk〉β̃k (3.11)

where 〈xj , y〉 =
∑N

i=1 xijyi. Hence we need to compute inner products of each feature
with y initially, and then each time a new features xk enters the model (for the first time),
we need to compute and store its inner product with all the rest of the features (O(Np)
computations). We also keep an unordered set of those indices j for which β̃j are non-zero
and update that set as the algorithm progresses. Hence, withm non-zero terms in the model,
a complete cycle costs O(pm) operations if no new variables become non-zero, and costs
O(Np) for each new variable entered. Most importantly, O(N) calculations do not
have to be made at every step. Because of this main advantage of the covariance update,
it has the potential to perform very well if most of the features in the final solutions are zero.
If that is indeed the case, they may never be introduced as a non-zero coefficient during
the algorithm, and we will never need to compute the inner products of their respective
features with the other features.

The naive update can be easily implemented by using linear algebra, and it is simple to
implement. The covariance update is a bit more complex to implement because of the need
to maintain an unordered set during the algorithm. We implemented both the covariance
update and the naive update and compared their speed performance on the datasets from
Aquatic and randomly generated data. When N >> p (as in our case) the covariance
method is expected to significantly outperform naive method because covariance does at
most O(p) operations per iteration and occasionally O(N) (at most p times), while naive
uses O(N) operations at every step.

A formal comparison between the two methods is located in Section 5.7. However, the
iteration complexities of both methods suggest that the covariance update rule is faster,
and therefore is the foundation for further optimizing the coordinate descent algorithm.

3.4 Front Heavy Covariance Method

As we can see from equation (3.11), the update rule in the covariance update method de-
pends only on the inner products of between the target and the features and the inner
products between the features. Thus, if we precompute these quantities before running CD,
we can calculate the update in equation (3.9) by simply computing the sum in equation
(3.11) with our precomputed inner products. In the front heavy covariance method, we
do all the computations before the algorithm begins. In other words, we precompute and
store the inner products XT y = (〈xi, y〉)Ni=1 and the Gram matrix XTX = (〈xi, xj〉)ij . After
that, we execute the update rule given by equation (3.9) by using the sum in equation (3.11).

Algorithm 4 Front Heavy Covariance Method

1: Precompute and store XTy and XTX
2: Run normal covariance using equation (3.11)

34

One disadvantage of the front heavy covariance method is that it may lead to unnec-
essary computations. For example, if there is a feature whose weight is always zero, then
standard covariance will never compute its inner products with the other columns. How-
ever, the front heavy method will always compute that feature’s inner products with all of
the other features, which could be costly. Section 5.8 shows results comparing front heavy
covariance against standard covariance.

3.5 Numerical Linear Algebra

Intel’s Math Kernel Library (MKL) allows us to achieve peak performance for linear algebra
operations on an Intel processor. One way the library does this is by parallelizing its
operations through vectorization and an open-source parallel programming library OpenMP.
Vectorization, also known as array programming, is performing operations on an entire array
at once. This significantly improves computing performance over traditional for loops.
OpenMP is a library for parallelizing code by splitting up loops into tasks that can be
performed simultaneously on multiple processors.

3.6 Thresholding Rules

The thresholding method consists of discarding a feature, is the magnitude of its inner
product with the target is below a certain threshold. In our literature review, we came
across rules, such as those in [16], for discarding predictors in lasso-type problems like the
elastic net. These screening rules are essentially thresholding bounds. If satisfied, it is
guaranteed that the thresholded feature will be zero in the final solution, and this can be
ignored in the covariance update. This leads to saving computations as we consider fewer
features. The screening rules proposed in [16] lead us to try to control the thresholding
parameter and evaluating its performance with cross-validation. At the beginning of the
covariance update, we need to precompute all of the inner products 〈y, xj〉 for all j. If
some of these inner products are sufficiently “small,” or below some given threshold, we can
discard their respective features and set them to zero in the final solution. This discarding
of features is reasonable because a small inner product with the target likely indicates a
lower correlation with the target, which means that βj is likely to be 0. We tried out
experimenting with the thresholding parameter to see which threshold value is the “best”.
Our studies are shown in Section 5.9.

3.7 Disk I/O

3.7.1 Main Problem

One dataset that we are working with is 115 GB in binary format with single precision. If
we increase to double-precision, then that dataset, when loaded in, is 230 GB. Since we are
only working with 16 GB of RAM, we required a method to load in data partially.

3.7.2 Gram-based Coordinate Descent

The method described in Section 3.4 is also called gram-based CD. The matrix XTX is
called the gram matrix. After XTX and XT y are calculated, we no longer need to have X

35

loaded into memory. The gram can be calculated in blocks by rows of X. Let m ≤ N be
the number of blocks in X determined such that we load in as many rows as possible. X is
thus structured as follows:

X =



X1

X2

.

.

.
Xm


To calculate XTX, we can calculate

XTX =

m∑
i=1

XT
i Xi

Thus, we can calculate XTX without loading in all X all at once. We only have to load
in Xi, which can be as small as a row. We also only store the much smaller gram matrix,
which has dimensions p by p. For this reason, gram-based approaches are mostly used when
N >> p. XT y is calculated in similarly to the gram matrix. With this method, our limit
for loading in data is no longer defined by the size of X. Instead, our memory limit is
mainly determined by the sizes of 2 rows of X, y, the gram matrix, and XT y. We studied
how the performance of this method in Section 5.10

3.8 Preconditioning X

Another family of methods for speeding up coordinate descent aims to reduce the number
of iterations for which it runs. One such method is early stopping (discussed in Section
4.5), where the algorithm stops before it has fully converged, sacrificing a small amount
of accuracy to save time. In this section, we discuss a different approach: preconditioning
the data such that the algorithm converges in only a few iterations. Section 5.13 shows the
performance of this preconditioning concept.

Recall from Section 3.4 the concept of the Gram matrix XTX = {〈Xi, Xj〉}i,j where
〈Xi, Xj〉 is a measure of the correlation between features i and j. If XTX = I, then
〈Xi, Xj〉 = 0 for every i 6= j, implying that every column has no correlation with any other
column. In this case coordinate descent converges in just one iteration, as it moves each
feature independently to its value at the global minimum and thus never has to update
a feature more than once. For a simple visualization of this concept, consider Figure 3.1
below. For z = 2x2 + y2, the ellipses are oriented along the x and y axis, so x and y are
immediately set to 0 on their first updates. But the xy term in z = 2x2 + y2 + xy rotates
the ellipses, so CD takes several iterations to converge. XTX = I has roughly the same
effect (in a much higher-dimensional sense) as c = 0 in z = ax2 + by2 + cxy.

In this spirit, consider substituting the substitution (XTX)−1/2β1 = β in the elastic net
formulation in equation (2.1), giving

β̂1 = argmin
β

1

2N
‖X((XTX)−1/2β1)− y‖22 + λ1‖(XTX)−1/2β1‖1 +

1

2
λ2‖(XTX)−1/2β1‖22

(3.12)
where G = (XTX)−1/2 is defined such that G ∗ G = (XTX)−1. While not every matrix
has a ‘square root’ in this sense, (XTX)−1 does because it is the inverse of the positive

36

Figure 3.1: CD converges in one iteration on z = 2x2 +y2 where features x and y are “uncorrelated”
but takes many iterations to converge for z = 2x2 + y2 + xy due to the xy term.

37

semidefinite matrix XTX and hence is also positive semidefinite. One can calculate the
square root of such a matrix by finding its eigen/spectral decomposition

(XTX)−1 = QΛQ−1,

calculating the square root of the diagonal matrix Λ by taking the square roots of each of
its (positive) diagonal elements, and letting

(XTX)−1/2 = Q
√

ΛQ−1

so that

(XTX)−1/2 · (XTX)−1/2 = Q
√

ΛQ−1Q
√

ΛQ−1 = Q
√

Λ
√

ΛQ−1 = QΛQ−1 = (XTX)−1.

If we view the first term of equation (3.12) as 1
2N ‖(X(XTX)−1/2)β1‖22, we see that we have

a new elastic net-like problem with

Z = X(XTX)−1/2

in place of X, so we can rewrite equation (3.12) as

β̂1 = argmin
β

1

2N
‖Zβ1 − y‖22 + λ1‖Gβ1‖1 +

1

2
λ2‖Gβ1‖22. (3.13)

This point of this substitution is that now

ZTZ = (X(XTX)−1/2)TX(XTX)−1/2

= (XTX)−1/2
(
(XTX)−1

)−1
(XTX)−1/2

= Q
√

ΛQ−1
(
QΛQ−1

)−1
Q
√

ΛQ−1

= I

Hence multiplying X by G ‘rotates’ it in the same sense that rotating the ellipses in Figure
3.1 to align with the x and y axes causes CD to converge in one iteration. Thus we can
solve equation (3.13) using coordinate descent to obtain β̂1 and set β̂ = Gβ̂1 to recover
a solution to the original problem in equation (2.1). If λ1 = λ2 = 0 then by the above
discussion CD will solve the preconditioned problem in equation (3.13) in one iteration.
The multiplication by G in λ1‖Gβ1‖1 + 1

2λ2‖Gβ1‖22 adds some dependence between features
so the preconditioned problem likely won’t fully converge within one iteration, but it should
still converge in fewer iterations than the original problem.

3.8.1 Preconditioned Problem Update Rule

Equation (3.13) is a modification of the original elastic net formulation in equation (2.1),
so we need to derive a corresponding new version of the coordinate update step in equation
(3.9). An additional complication arises from the fact that, while we could assume that X
was standardized, we cannot make the same assumption for Z. Suppose we are updating
feature k, so we aim to minimize the modified loss function

L(βk) =
1

2N
‖Zβ − y‖22 + λ1‖Gβ‖1 +

1

2
λ2‖Gβ‖22.

38

with respect to βk. Straightforward calculus shows that

∂

∂βk

1

2
λ2‖Gβ‖22 = λ2

p∑
l=1

βl〈Gk, Gl〉. (3.14)

and, using an idea similar to the covariance update in equation (3.11),

∂

∂βk

1

2N
‖Zβ − y‖22 =

1

N

−〈Zk, y〉+

p∑
j=1

〈Zk, Zj〉βj

 . (3.15)

ZTZ = I =⇒ 〈Zk, Zk〉 = 1 and 〈Zk, Zj〉 = 0 for j 6= k so we can rewrite equation (3.15) as

∂

∂βk

1

2N
‖Zβ − y‖22 =

1

N
(βk − 〈Zk, y〉) . (3.16)

∂
∂βk

λ1‖Gβ‖1, however, poses a greater challenge. Define

h(βk) = ‖Gβ‖1 =

p∑
j=1

∣∣∣∣∣
p∑
l=1

gjlβl

∣∣∣∣∣ =

p∑
j=1

|gjkβk + rjk|.

where

rjk =
∑
l 6=k

gjlβl

is the residual sum at row j of G.
As a function of βk, the original λ1‖β‖ =

∑p
j=i |βj | fails to be differentiable only at

βk = 0. However, since βk is present in every term of
∑p

j=1 |gjkβk + rjk|, h fails to be
differentiable at the p points where gjkβk + rjk = 0, namely

βk ∈ ND =

{
−
rjk
gjk

∣∣j ∈ {1, . . . , p}} (3.17)

With the exception of the separate case where β = ~0 (the update for this case is given in
equation (3.24) below) we assume that ND contains j distinct points.

The derivation of the original elastic net update uses the concept of subdifferentials to
handle the case where βk = 0. We consider a differentiable function f of one variable to be
convex if

∀x, y ∈ R : f(y) ≥ f(x) + f ′(x)(y − x) [12].

Geometrically, we interpret this as the graph of f , never dipping below those of its tangent
lines. For non-differentiable functions such as f(x) = |x| we define a subgradient at x to be
any slope m ∈ R such that the graph of f lies above the tangent line at x with slope m:

∀y ∈ R : f(y) ≥ f(x) +m(y − x)

Then the subdifferential ∂f(x) of f at x is the set of all subgradients at x:

∂f(x) = {m ∈ R|∀y ∈ R : f(y) ≥ f(x) +m(y − x)}.

For example, Figure 3.2 shows some subgradients of f(x) = |x| at the non-differentiable
point x = 0.

39

Figure 3.2: ∂f(0) = [−1, 1] for f(x) = |x|. Any line y = mx with |m| ≤ 1 will lie below the graph
of |x| (in red), including the dotted y = ± 1

2x and y = ± 3
4x

If f is differentiable at x, then the only line tangent to f at x has slope f ′(x), so

∂f(x) = {f ′(x)}.

βk globally minimizes the convex function h ⇐⇒

∀x ∈ R : h(βk) ≥ h(x) ⇐⇒ ∀x ∈ R : h(βk) ≥ h(x) + 0(βk − x) ⇐⇒ 0 ∈ ∂h(βk).

To calculate ∂h, we must first determine h′(βk) at points βk 6∈ ND. For each j,

∂

∂βk
|gjkβk + rjk| =

{
−|gjk| βk < −

rjk
gjk

|gjk| βk > −
rjk
gjk

Let

c1 = −
r

(1)
k

g
(1)
k

, . . . , cp = −
r

(p)
k

g
(p)
k

(3.18)

be the points of ND sorted from least to greatest. This lets us define, for βk 6∈ ND,

h′(βk) =



s1 = −
∑p

l=1 |g
(l)
k | βk < c1

s2 = −
∑p

l=2 |g
(l)
k |+ |g

(1)
k | c1 < βk < c2

...

sm = −
∑p

l=m |g
(l)
k |+

∑m−1
t=1 |g

(t)
k | cm−1 < βk < cm

...

sp+1 =
∑p

t=1 |g
(t)
k | βk > cp.

(3.19)

Due to the convexity of h, for βk = cj , any tangent line with a slope between the slopes
of the portions of the graph of h on either side of cj will be a subgradient. That is, for
j = 1, . . . , p :

∂h(cj) = [sj , sj+1]

40

Figure 3.3: ∂f(1) = [1, 3] for the red line f(x) = |x−1|+ |−2x+1|. Any slope between the slopes of
the portions of the graph immediately to the left and right of x = 1 is a subgradient. For example,
the dotted green line has slope 2, a subgradient.

Figure 3.3 below gives a simple illustration of this fact.
Now, using equation (3.19) and the fact that if h is differentiable at βk then ∂h(βk) =

h′(βk),

∂h(βk) =



s1 βk < c1

[s1, s2] βk = c1

s2 c1 < βk < c2

...

[sm, sm+1] βk = cm

sm+1 cm < βk < cm+1

...

[sp, sp+1] βk = cp

sp+1 βk > cp.

(3.20)

Combining equation (3.20) with the results of equations (3.14) and (3.16) shows that L(βk)
is minimized when

∂L(βk) =
1

N
(βk − 〈Zk, y〉) + λ2

p∑
l=1

βl〈Gk, Gl〉+ λ1∂h(βk)

=

(
1

N
+ λ2〈Gk, Gk〉

)
βk −

1

N
〈Zk, y〉+ λ2

∑
l 6=k
〈Gk, Gl〉βl + λ1∂h(βk)

= akβk − bk + λ1∂h(βk) 3 0

41

where

ak =
1

N
+ λ2〈Gk, Gk〉 (3.21)

and

bk =
1

N
〈Zk, y〉 − λ2

∑
l 6=k
〈Gk, Gl〉βl. (3.22)

To speed up the calculation of ak and bk, note that

GTG = ((XTX)−1/2)T (XTX)−1/2 = (XTX)−1/2(XTX)−1/2 = (XTX)−1

so if we store (XTX)−1 from the process of calculating G, we can easily obtain 〈Gk, Gl〉 =
((XTX)−1)k,l for any k and l.

We must consider four types of cases for ∂h(βk).

1. ∂h(βk) = s1 (βk < c1):

akβk − bk + λ1s1 = 0 =⇒ βk =
bk − λ1s1

ak
< c1 ⇐⇒ bk < akc1 + λ1s1.

So if bk < akc1 + λ1s1, L is minimized at βk = bk−λ1s1
ak

.

2. ∂h(βk) = [sm, sm+1] for m = 1, . . . , p (βk = cm):

akβk − bk + λ1[sm, sm+1] = akcm − bk + [λ1sm, λ1sm+1]

= [akcm − bk + λ1sm, akcm − bk + λ1sm+1] 3 0

⇐⇒ akcm − bk + λ1sm < 0 < akcm − bk + λ1sm+1

⇐⇒ akcm + λ1sm < bk < akcm + λ1sm+1

So if akcm + λ1sm < bk < akcm + λ1sm+1, L is minimized at βk = cm.

3. ∂h(βk) = sm for m = 2, . . . , p− 1 (cm−1 < βk < cm):

akβk − bk + λ1sm = 0 =⇒ cm−1 < βk =
bk − λ1sm

ak
< cm

⇐⇒ akcm−1 + λ1sm < bk < akcm + λ1sm.

So if akcm−1 + λ1sm < bk < akcm + λ1sm, L is minimized at βk = bk−λ1sm
ak

.

4. ∂h(βk) = sp+1 (βk > cp):

akβk − bk + λ1sp+1 = 0 =⇒ βk =
bk − λ1sp+1

ak
> cp ⇐⇒ bk > akcp + λ1sp+1.

So if bk > akcp + λ1sp+1, L is minimized at βk =
bk−λ1sp+1

ak
.

42

Combining the four cases results in a sort of ‘multi soft threshold’ for the coordinate update
rule for β 6= ~0.

β̃k ← Sm(bk) =



bk−λ1s1
ak

bk < akc1 + λ1s1

c1 akc1 + λ1s1 < bk < akc1 + λ1s2
bk−λ1s2

ak
akc1 + λ1s2 < bk < akc2 + λ1s2

...

cm akcm + λ1sm < bk < akcm + λ1sm+1
bk−λ1sm

ak
akcm + λ1sm+1 < bk < akcm+1 + λ1sm+1

...

cp akcp + λ1sp < bk < akcp + λ1sp+1
bk−λ1sp+1

ak
bk > akcp + λ1sp+1

(3.23)

If β = ~0, then ∀j : rjk = 0 so ND = {0} and

∂hβk =


−‖Gk‖1 βk < 0

[−‖Gk‖1, ‖Gk‖1] βk = 0

‖Gk‖1 βk > 0

so the the coordinate update is just

β̃k ←
S(bk, λ1‖Gk‖1)

ak
(3.24)

where S is the soft threshold function from the original update rule in equation (3.9).

3.9 Warm Start

A warm start is setting the initial weights to close to the final solution to reduce computa-
tion. This is mainly employed when solving a similar problem beforehand. The potential
speedup from a Warm Start can range from none speedup to a total speedup where CD
runs for no iterations. Section 5.14 shows the performance of the warm start concept.

3.9.1 Rolling Window

CD for Aquatic will be employed on time series data in a rolling window fashion. This
means that as new data comes into the system, old data is removed in the following way:

Xold =



X1

X2

.

.

.
Xm



Xnew =



X2

X3

.

.

.
Xm+1


43

We can create a new gram matrix like this:

Gramnew = XT
oldXold −XT

1 X1 +XT
m+1Xm+1

The new problem is very similar to the old problem. So, we can utilize a warm start for the
new problem.

3.9.2 With a Distributed Network

We can also utilize a warm start when running CD on a distributed network. When using
the front-heavy method, we can load in each Xi on a different computer node. After every
node has completed calculating their respective XT

i Xi, we can add up all small grams to
create the final gram matrix. Every computer node should theoretically run in the same
amount of time. But, in practice, each node will take a different amount of time to compute
XT
i Xi on node i. Once a certain percentage of nodes, we collect their grams and run CD

on the subproblem:

β̂ = argmin
β

1

2N
‖Xsubβ − ysub‖22 + λ1‖β‖1 + λ2‖β‖22 (3.25)

where Xsub and ysub are made up from the nodes that have completed their calculations.
We can then use the solution to the subproblem as a warm start for the whole problem
after every node has completed its calculation.

44

Chapter 4

Coordinate Descent Optimization
Methods with Accuracy Loss

This chapter describes various techniques that can improve CD computational time with
the sacrifice of small amounts of accuracy.

4.1 Computer Precision

The data provided by Aquatic consists of single-precision 32-bit floats (float32), which
stores values with up to 7-8 decimal digits. However, eight digits of precision are not
realistic when using observed equity data, where values are only accurate up to an error
of 1e−4. This limited accuracy suggests that we do not need to store all 7-8 decimal
digits in computations. In theory, storing fewer digits is advantageous because 1) the data
takes up less space in memory, and 2) the computations no longer need to use all of the
digits, leading to possible speedup. The only downside to using lower precision is the loss
in computational accuracy. With this promising concept, we looked at several possible
methods of implementing lower precision described in Section 5.11.

4.2 Gram Matrix Estimation

Most of the calculations done by the covariance method are inner products between columns
of X. Hence the front heavy method in Section 3.4 derives its name from its initial compu-
tation of the Gram matrix doing most of the algorithm’s work before the covariance updates
even begin. Thus, for example, halving the time to calculate the Gram matrix will almost
halve the algorithm’s total runtime. Section 3.7.2 discusses a method of calculating the
Gram matrix in chunks when available memory is limited. Here we propose a similar idea,
but instead of calculating the Gram matrix exactly as in Section 3.7.2, we estimate it by
limiting expensive computations to one chunk of X and extrapolating the rest of X.

Pearson Correlation Coefficients

Let a and b be two features corresponding to columns xa and xb of X. Assuming the columns
of X are standardized such that their means are 0, the Pearson Correlation Coefficient
between xa and xb is

rab =
〈xa,xb〉
σaσb

45

where

σz =

√√√√ N∑
i=1

x2
zi

is the
√
N times the standard deviation of xz.

In studies of Aquatic’s ≈ 17 million × 10 dataset, we qualitatively observed that rab
for each pair of features a, b is relatively invariant over time. If we divide X into chunks by
rows - say 17 chunks of 1 million rows - rab calculated using only the rows in the first chunk
is approximately equal to rab calculated using only the rows in the second chunk and so on.
The same invariance does not hold for σa for a given feature a, however, as some chunks
have significantly larger σa values than others. This observation, along with the observation
that

rab =
〈xa,xb〉
σaσb

=⇒ 〈xa,xb〉 = rabσaσb

motivates a method for estimating the Gram matrix values 〈xa,xb〉.
First calculate rab for each pair of features a, b using only the first chunk of X. Then for

the first chunk and each subsequent chunk calculate σa for each column a using only the
rows of that chunk. Now for each pair a, b estimate the chunk’s value of 〈xa,xb〉 as rabσaσb,
using the rab calculated for the first chunk. Finally, for each a and b sum the estimated
〈xa,xb〉 values for each chunk into an estimated value for all of X, as in Section 3.7.2. The
collection of estimated 〈xa,xb〉 values over all pairs of features forms the estimated Gram
matrix for X.

Instead of performing the O(Np2) time calculation of the inner products of each pair of
features over the entire matrix X, the estimation performs this expensive calculation only
for a small fraction of the rows of X. For the remaining chunks, it only has to calculate σ of
each column, requiring just O(Np) time. The results of applying this method to Aquatic’s
17 million × 162 dataset can be viewed in Section 5.12.

4.3 MiniCD and ensembling methods

4.3.1 Literature Review

In many machine learning problems, ensemble methods combine solutions of different models
to improve the accuracy over a single estimator. As a motivation for the ensembling methods
we used in our studies we did a general literature review of various ensembling methods.
Chapter 8 of [5] provides a great overview of ensembling techniques and introduces the
following methods:

1. Bagging: Consider a regression problem. Suppose we fit a model to out training data
Z = (x1, y1), . . . , (xN , yN), obtaining the prediction f̂(x) at input x. Bootstrap aggregation
or bagging averages this prediction over a collection of bootstrap samples, thereby reducing
its variance. For each bootstrap sample Z∗b, b = 1, 2, . . . , B, we fit our model, giving
prediction f̂∗b(x). The bagging estimate is defined by ˆfbag(x) = 1

B

∑B
b=1 f̂

∗b(x). Denote by

P̂ the empirical distribution putting equal probability 1
N on each of the data points (xi, yi).

In fact the ”true” bagging estimate is defined by EP̂ f̂
∗(x), where Z∗ = (x∗1, y

∗
1), . . . , (x∗N , y

∗
N)

and each (x∗i , y
∗
i) ∼ P̂. Then the above expression is a Monte Carlo estimate of the true

bagging estimate as B → ∞. Bagging can dramatically reduce the variance of unstable
procedures like trees, leading to improved prediction. A simple argument shows why bagging
helps under squared-error loss, in short because averaging reduces variance and leaves bias

46

unchanges. Assume our training observations (xi, yi), i = 1, . . . , N are independently drawn
from a distribution P, and consider the ideal aggregate estimator fag(x) = EP f̂∗(x). Here x
is fixed and the bootstrap dataset Z∗ consists of observations x∗i , y

∗
i , i = 1, 2, . . . , N samples

from P. Note that fag(x) is a bagging estimate, drawing bootstrap samples from the actual
population P rather than the data. It is not an estimate that we can use in practice, but
is convenient for analysis. We can write

EP [Y − f̂∗(x)]2 = EP [Y − fag(x) + fag(x)− f̂∗(x)]2 =

= EP [Y − fag(x)]2 + EP [f̂∗(x)− fag(x)]2 ≥
≥ EP [Y − fag(x)]2

The extra error on the right-hand side comes from the variance of f̂∗(x) around its mean
fag(x). Therefore true population aggregation never increases mean square error. This
concept suggests that bagging- drawing samples from the training data - will often decrease
mean-squared error.

2. Model Averaging: In this method, let’s have predictions f̂1(x), . . . , ˆfM (x), under
squared-error loss, we can seek the weights w = (w1, . . . , wM) such that

ŵ = argminwEP [Y −
M∑
m=1

wmf̂m(x)]2 (4.1)

Here the input value x is fixed, and the N observations in the dataset Z (and the target
Y) are distributed according to P. The solution is the population linear regression of Y on
F̂ (x)T = [f̂1(x), . . . , ˆfM (x)]:

ŵ = EP [F̂ (x)F̂ (x)−1]TEP [F̂ (x)Y] (4.2)

Now the full regression has smaller error than any single model

EP [Y −
M∑
m=1

ŵmf̂m(x)]2 ≤ EP [Y − f̂m(x)]2 ∀m (4.3)

3. Stacking: One issue with model averaging is that overfitting can occur due to some
of the models having a much higher complexity than others. Stacking deals with this issue.

We denote by f̂m
−i

(x) to be the prediction at x, using model m, applied to the dataset
with the i-th observation removed. The stacking estimate of the weights is obtained from

the least-squares linear regression of yi on f̂m
−i

(xi),m = 1, 2, . . . ,M . In detail, the stacking
weights are given by

ŵst = argminw

N∑
i=1

[yi −
M∑
m=1

wmf̂m
−i

(xi)]
2 (4.4)

The final prediction is
∑

m ŵ
st. By passing the cross-validated predictions f̂m

−i
(x), stack-

ing avoids giving unfairly high weight to models with higher complexity. Better results are
obtainable by restricting the weights to be nonnegative and to sum to 1. There is a close
connection between stacking and model selection via leave-one-out cross-validation. The
stacking idea is more general than described above. One can use any learning method, not
just linear regression, to combine models, and the weights could also depend on the input
location of x.

47

4. Stochastic Search (Bumping): This method does not involve averaging or com-
bining models, but rather is a technique for finding a better single model. Bumping uses
bootstrap sampling to move randomly through model space. For problems where the fitting
method finds many local minima, bumping can help avoid getting stuck in poor solutions.
As in bagging, we draw bootstrap samples and fit a model to each. But rather than aver-
age the predictions, we choose the model estimated from a bootstrap sample that best fits
the training data. In detail, we draw bootstrap samples Z∗1, . . . ,Z∗B and fit our model to
each, giving predictions f̂∗b(x), b = 1, 2, . . . , B at input x. We then choose the model that
produces the smallest prediction error, averaged over the original training set. For squared
error, for example, we choose the model obtained from bootstrap sample b̂, where

b̂ = argminb

N∑
i=1

[yi − f̂∗b(xi)]2

The corresponding model predictions are f̂∗b(x).

4.3.2 MiniCD

Loading the data is the main bottleneck of our algorithm based on the front heavy method.
This bottleneck gives motivation to solutions that do not include the whole data, whose
solutions hopefully approximate the ground truth. We developed a general scheme for such
a procedure, which we refer to as MiniCD. Our methods in this section were motivated
by the literature review that we did on ensembling methods in Section 4.3.1. The general
outline of MiniCD is given in Algorithm 5. Notice that step 1 can be implemented in
many ways. For example, we can choose the subsets to be non-intersecting, or we can
allow intersections. There is also flexibility in step 3. as we can vary the lasso and ridge
regularizers for each subproblem. Step 4 is the most open-ended one, and there are many
methods one can apply. We mainly focused on two of them: averaging and voting. General
exploratory data analysis of the partial solutions of MiniCD can be found in Section 5.3.
This analysis helps us get a better understanding of how the partial solutions relate to the
ground truth.

Algorithm 5 MiniCD

1: Split the dataset (X, y) by rows into batches (X1, y1), . . . , (XN , yN).
2: Select m of the chunks (Xi1 , yi1), . . . , (Xim , yim)
3: Solve elastic net with input data (Xij , yij), and obtain a solution wj for each j
4: Ensemble the solutions w1, . . . , wm to approximate the ground truth w

4.3.3 Averaging

We tried two ways of implementing step 1. First, we split the data evenly into N batches by
rows and solved each of them. Secondly, we randomly choose the batches. We implemented
both methods and recorded the results. Our methods are described below:

1. We partition the dataset into m equally sized batches of rows S1, . . . , Sm, and obtain
solution estimates wS1 , . . . , wSm . Then, we averaged the estimates to get an approx-
imation solution ŵ = 1

m(
∑m

i=1 xSi). Then, we compared ŵ to the ground truth w
by using the following metrics: Euclidean distance, relative distance (dist/norm),

48

and non-zero support accuracy. We also experimented with the number of batches
m = 2, 3, 4, 5, 6, 7, 8, 10, 20, 50. For each of these values, we recorded our results in the
table (refer to table). We used λ1 = 5 ·10−5 and λ2 = 10−1 because those values gave
us the desired sparsity of 45 (out of 162) non-zeros in the medium dataset. From our
results, we can see that as the number of batches increases, both the euclidean and
relative distances increase while the support accuracy decreases. This result suggests
that as we combine more estimates, the estimated solution tends to get further away
from the ground truth in the above metrics. Also note that when averaging these
solutions, there is the danger of losing a lot of support accuracy. For example, if an
insignificant feature is zero in all of the estimates but one, it will be non-zero in the
predicted average. Another issue with averaging is that it introduces a one-sided bias,
discussed in the next point.

2. We sampled X equally sized batches of contiguous rows S1, . . . , SN of the data X
and obtained solution estimates wS1 , . . . , wSN

. Since we are using the Front heavy
method, we rely of computing the Gram matrices XT

Si
XSi and the inner products

XT
Si
ySi . When XSi consists of randomly chosen rows of X, then one can show that

XT
Si
XSi and XT

Si
ySi are unbiased estimators of XTX and XT y. Because of that

averaging the partial solutions may seem like a tempting idea at first. However, each
of the solutions wi based on the subset Si incurs a one-sided bias. Therefore, as we
average all of the solution the one-sided bias will not cancel and will remain one-sided.
To make this more clear mathematically let’s consider a simplified version where we
only solve Ordinary Least Squares (the argument easily generalizes to Elastic Net).
Then XT

Si
XSi = XTX + ε1 and XT

Si
ySi = XT y + ε2, where E[ε1] = E[ε2] = 0 and ε1

and ε2 are independent as the estimators are unbiased. For simplicity, εi for i = 1, 2
be univariate noise, since the argument can be easily generalized in the case where
the noise is multivariate. Then by the solution of Ordinary Least Squares, we get
E[wSi] = E[(XTX + ε1)−1]E[XT y+ ε2]. By above we have that E[XT y+ ε2] = XT y
as E[ε2] = 0. Now, by doing a Taylor expansion of x−1 at XTX and using the fact
that E[ε1] = 0 we see that

E[wSi] = E[(XTX + ε1)−1]XT y =

= ((XTX)−1 − (XTX)−2E[ε1] + 2(XTX)−3E[ε21] + o(ε21))XT y =

= ((XTX)−1 + 2(XTX)−3E[ε21] + o(ε21))XT y =

= (XTX)−1XT y + 2(XTX)−3E[ε21]XT y + o(ε21)XT y =

= w + 2(XTX)−3E[ε21]XT y + o(ε21)XT y

Notice that for small ε1 the term 2(XTX)−3E[ε21]o(ε21) is always strictly positive-
definite and dominates the term o(ε21)XT y. Therefore, there will always be a one-
sided finite-sample bias. It is important to note here that this does not contradict the
Central Limit Theorem. As the number of observations approaches infinity, we get
that E[ε21] goes to 0. However, the estimator wSi approaches the limit only from one
side. Thus, averaging the solution estimates will introduce bias. It would be helpful
to empirically understand what the bias exactly is and correct for it by adding a
constant. The possibility to correct for bias leads us to exploratory data analysis of
many randomly generated solutions wi and how the feature entries are distributed
with respect to the true values.

Figure 4.1 shows the magnitudes of all active (non-zero) coefficients in the ground
truth solution against the magnitudes of the coefficients of the estimated obtained by

49

just taking the mean of w1, . . . , wN . Using the Large dataset, we used all 493 days
for our batches, where each batch corresponds to 33,000-36,000 rows of the data. As
the plot shows, the ground truth solutions’ values are consistently larger than the
ones for the mean of the partial estimates. This remark empirically demonstrates the
presence of a one-sided bias. Notice that as the feature’s importance decreases, the
bias becomes less significant, and it hard to see.

Furthermore, in Figure 4.2, we plotted histograms of the estimated values for each of
the top 6 features along with their estimated coefficients from the partial solutions.
Each feature’s distribution from the estimates is always closer to zero than the ground
truth value for the feature. This observation supports the one-sided bias previously
explained.

We can see a one-sided bias in those weights, whose side depends on the sign of
the true weights. This one-sided bias could be because we did not sample random
days, but we merely used all of the days or because we did not have enough samples.
Nevertheless, the plot is convincing enough to show that some form of bias exists,
confirming our theoretical considerations above. Unfortunately, we could not estimate
this bias successfully and therefor did not correct for it. Thus, we decided not to
pursue averaging partial solutions any further.

Figure 4.1: Magnitude of the active features in the ground truth sorted in a decreasing fashion and
the estimate obtained by taking the mean of the partial solutions. We can see a form of one-sided
bias for the more prominent features.

50

Figure 4.2: The top 6 features in magnitude for the Large dataset. The red vertical lines represent
the true values of the coefficient, and the blue histogram represents the distribution of the coefficient
over the partial solution for each of the 493 days.

4.4 Ensemble Methods

4.4.1 Ensembling with MiniCD

By using the MiniCD concept explained in Section 4.3.2, we can devise sets of estimates
based on random samples of the data. To avoid the bias described in the previous subsection
that arises when averaging these estimates, we can use ensemble methods to determine which
features play an important role in obtaining ground truth to the minimization problem,
which requires the entire dataset. Dependent on lasso and ridge penalty values, the weights
considered as ground truth can be extremely sparse. The weights equal to zero provide no
numerical impact to the solution, and therefore, are not essential to the overall computation
of CD. When removing these weights from the computation, the problem’s dimensions
reduce and, consequently, the time of CD shortens. If a large number of non-impactful
weights are removed in a short amount of time, there is possible speedup to the overall
minimization problem without losing significant amounts of accuracy.

Ensemble methods commonly use a voting scheme to combine different solutions. This

51

report implemented two voting methods, threshold, and tree-based voting, to estimate which
features are nonzero (active) and zero (inactive) in the ground truth.

4.4.2 Threshold Voting

Let’s suppose that our partial estimates obtained in step 3 in Algorithm 5 are stored in
the rows of a matrix E with m rows and p columns, where p is the number of features. To
use threshold voting, we need to specify a threshold t ∈ (0, 1) beforehand. The process of
thresholding voting is shown in Algorithm 6.

Algorithm 6 Threshold voting

1: Input: threshold value t ∈ (0, 1).
2: Initialize the set of active features A = ∅
3: for all k ∈ {1, 2, .., p} do
4: - Take the k-th column of Ek and compute the number of j ∈ [1,m] such that

Ejk 6= 0, let this number be Nk

5: - Compute the percent active of feature k, which is Nk

m

6: - If Nk

m
> t, then add feature k to A

7: end for
8: Run Coordinate Descent only on the set of selected features A and produce a

solution ŵ

For each feature, we compute the percent of times it is active amongst the partial
solutions. If this percentage is larger than a given threshold, then this feature is considered
active, and otherwise, it is not active. Once we have determined which features are active
and which are not, we run CD only on the features claimed as active. This method is
promising since it is easily parallelizable and can potentially leave out many unimportant
features, which will decrease computation time and make our algorithm more efficient while
sacrificing some accuracy if the true active set of features is not entirely captured.

In Figure 4.3 we have plotted the percent active vs the magnitude for each feature in
the Large dataset by using m = 100 batched (days). As we can see, there seems to be
a mild correlation between the magnitude of the active features and their percent active,
which is a promising sign. However, we can also see from the plot that the active and
inactive features are highly inseparable by a threshold (a vertical line), which indicates that
we are not very likely to both capture the true support and leave out the zero features. The
trade-off between recall and precision shown in Section 5.4 further shows this inseparability.
Results and analysis for our results from threshold voting are shown in Section 5.4.3.

52

Figure 4.3: Percent active vs magnitude of a coefficient for the Large dataset. 100 batches (days) of
size 35,000 were used to compute the percent active of each feature.

53

4.4.3 Tree Voting

Within voting via a threshold, each feature has an equal impact on the final decision. We
also wanted to implement a voting scheme where some features may have a more significant
impact on the final solution than others. One voting method where this inequality occurs
is via tree-based voting. For explanation purposes, this method considers one feature at
a time. However, in practice, like the threshold voting scheme described in the previous
subsection, this voting method is easily parallelizable.

This process initially starts with a set of weights, S, where each row is an individual
feature resulting from all batches, and each column is the full set of weights from one
individual batch. For a given feature k, this method takes Sk, a row, and assigns a node
to each vector value. Initial ordering of node assignment is unnecessary as each value is
calculated via a random sampling of data through the MiniCD method. Once each value
has a node, Algorithm 7 determines the active set of features.

Algorithm 7 Tree Voting Algorithm

1: assign each node a binary value, 0 if existing value = 0 and 1 if existing value 6= 0
2: for all k ∈ {1, 2, .., p} do
3: Take Sk
4: repeat
5: if 3 consecutive nodes exist then
6: consolidate to 1 node

where value determined through majority value of the 3 nodes
7: else if 2 consecutive nodes exist then
8: consolidate to 1 node based on majority value of the 2 nodes

if the two nodes have different values, then use the first node’s value
9: else

no consolidation needed
10: end if
11: until 1 node exists, which is the final node
12: end for

The algorithm takes many different values for a given feature and condenses them to
a single value, active or inactive. Within the algorithm, three nodes aggregate at a time,
where a majority vote occurs. If the majority of the nodes are active, the consolidated
node will be active, and the opposite occurs if the majority of the nodes are inactive. This
process repeats until one node remains. There are special cases defined in the algorithm
for when less than three nodes aggregate. The tree structure uses a ternary structure since
a majority vote for odd numbers cannot result in a tie. However, there is no reasoning for
defining a tree around five nodes or larger odd numbers.

It is important to note that the tree voting mechanism will always use a majority based
method for consolidating nodes only when the voting starts with m nodes, where m is
divisible by a power of 3. Otherwise, a large bias towards one node may arise on how many
nodes there are. One example of this bias is in Figure 4.4. In this case, the last node with
value 0 is compared to the condensed node with value one based on nine original nodes.
Using a majority vote here would result in large bias as one node would have an equal
weight to the remaining nine. As such, line 8 of Algorithm 7 chooses the left node over the
right node when comparing two nodes. This rule will never result in larger inequalities for

54

each node’s importance because the trees by design will either be symmetric or left-sided.
Additionally, this method can expand to a random forest-like structure, where each node
represents a voting tree itself. Results and analysis for our results from tree voting are
shown in Section 5.4.3.

1 0 1

1

1 1 1

1

1 0 0

0

1

0

0

0

1

0

Figure 4.4: Arbitrary case with 10 inital nodes such that the node from w10 would have much
stronger impact on the final decision without line 8 of Algorithm 7.

4.5 Early Stopping

Early stopping is a method of stopping an optimization algorithm early to reduce over-
fitting. However, it also can increase speed since the algorithm stops before unnecessary
computation. Early stopping depends on the problem space and is determined by a toler-
ance parameter c. We can stop CD after the duality gap (η) is smaller than c. Calculating
the duality gap is computationally intensive compared to the computations needed for the
rest of CD. If we could cut out all or even some of the duality gap calculation, we could
significantly reduce the computation. We start checking the duality gap once the estimated
weights stop changing that much from iteration to iteration. So, one way to reduce the
duality gap computation would be to start calculating it as late as possible. Another way
to reduce the duality gap’s computation would be to determine beforehand analytically how
many iterations CD requires to converge. However, this runs off the risk of not running
CD for long enough to converge and thus yielding a lower accuracy than we would like.
Section 5.5 shows the impact of the early stopping concept on our CD algorithm.

55

Chapter 5

Results

5.1 Hardware and Data Specifications

The studies for this project used 4 Intel(R) Xeon(R) Bronze 3104 CPUs, with 16 GB of
RAM. The strict limitations on hardware for this problem lead to two different optimiza-
tions, based on whether the computational environment is memory-free or memory-bound.
The problem becomes memory-bound when the data cannot be loaded into an algorithm
all at once due to memory shortages and must be broken up into parts. The Medium and
Large datasets are too large to fit into memory, so we use them to test our methods of
overcoming memory bounds.

5.2 Parameter Study for λ1 and λ2 values

For each of our datasets, we had to choose typical values of the λ1 and λ2 parameters to
achieve the desired sparsity provided by Aquatic. For the Medium dataset, this is around
30-50 (18%-31%) non-zero coefficients, and for the Large dataset, it is 300-500 (17%-28%)
non-zero coefficients. To find the right λ1 and λ2, we performed a grid search for different
values of λ1 and λ2 and recorded the number of non-zeros for each chosen pair.

Based on Tables A.1 and A.2, we determined λ1 and λ2 values to be used for the re-
mainder of the studies. For the Medium and Large datasets we used (λ1, λ2) = (5e−5, e−1)
and (λ1, λ2) = (e−5, e−2) respectively.

When implementing the voting thresholding method, we wanted to use values of (λ1, λ2)
for step 3 of Algorithm 5 so that the sparsity of the partial solutions matches the sparsity
of the ground true solutions. We wanted this property to hold so the voting thresholding
method would not be biased to select fewer features than needed or more features than
needed, as would be the case if the number of active coefficients in the partial solutions
is lower or higher than in the ground truth. For both the medium and large datasets, we
started from the default values of (λ1, λ2), which we determined above and varied them
until we achieved the desired sparsity. We used a batch size of around 35,000 rows for both
Medium and Large. Based on our results shown in Figure 5.1 we decided to choose values
(λ1, λ2) = (1.5e−4, 3e−1) for Medium and (λ1, λ2) = (e−4, e−1) for Large.

57

5.3 MiniCD exploratory data analysis

Here we present exploratory data analysis for the partial solutions from MiniCD introduced
in Section 4.3.2. We solved the elastic net problem for each of the 493 days in the Large
dataset and obtained 493 estimates. We wanted to visualize how does the support of theses
partial solutions vary across different days. This is illustrated in Figure 5.2. As we can see
from the figure, there are some features (e.g., the ranges [1647,1755], [50,130], [320,400]),
which are persistently inactive across the partial solutions. In terms of the overall support
overlap, we can see that the support set tends to be almost invariant over time, which is an
indicator that methods such as voting thresholding would work well, since even we sample a
small subset of 10 days, the percent actives should remain close to the total percent actives.

We also did exploratory data analysis on how the individual estimates of the MiniCD
framework compared to the ground truth solution for the medium dataset. We used two
metrics: MSE and non-zero accuracy (support accuracy). We define non-zero accuracy
as the number of matches between the partial coefficients and the ground truth based on
whether a coefficient is active or not. We also varied the batch size as 17281517 · c for
c = 0.002, 0.01, 0.02, 0.05, 0.2, 0.33, 0.5. The results from our studies are shown in Figure
5.3 and Figure 5.4 for MSE and non-zero accuracy respectively. As a general trend from
the figures, we can see that as we gradually increase the batch size, the MSE drops, and the
non-zero accuracy increases. This trend follows our intuition since, as we have more rows
in our batch, our training set gets closer and closer to the full training set. For MSE the
values range from 0.02 for c = 0.5 to 1.75 for c = 0.002, and for non-zero accuracy the values
range from 0.3 for c = 0.002 to 0.9 for c = 0.5. We can also see that as we decrease the
batch size, there appears to be more variability in the MSE. For the non-zero accuracy, we
observe a different behavior. There is little variability for the extreme values of the batch
size, and the variability amount peaks in the middle values (c = 0.02, 0.05, 0.01).

After looking at these plots, we were also interested in exploring how the support
sets overlap across all the partial weight estimates. This is illustrated in Figure 5.5.
Each of the 4 subfigures correspond to different batch sizes of 17281517 · c resulting from
c = 0.002, 0.02, 0.2, 0.5. The x-axis in each subplot represents the features and the y-axis
the partial weight estimates derived from the batches. We have separated the heatmaps
according to zero and non-zero features in the ground truth. We can notice that in all of
the 4 cases, the support matching support sets tend to be approximately invariant across
the estimates. Additionally, we can see that as we increase the batch size, the support
accuracy of the estimates at the zeros increases, while the accuracy for the non-zeros tends
to decrease. We expect this trend as the higher the batch size, the closer our training set is
to the full training set, and thus the solutions will be more similar.

58

(a)

(b)
Figure 5.1: Search for suitable (λ1, λ2) for the desired sparsity in the partial solutions on the Large
dataset.

59

Figure 5.2: Active features across days in the Large dataset. A white square indicates the a feature
is active and a dark square indicates that a feature is inactive(zero)

Figure 5.3: Lineplot of estimate vs MSE between the estimate and the ground truth soluton over
different batch sizes on the Medium dataset.

60

Figure 5.4: Lineplot of estimate vs non-zero accuracy (support accuracy) between the estimate and
the ground truth soluton over different batch sizes on the Medium dataset.

Figure 5.5: Support accuracy across batch sizes for c = 0.002, 0.02, 0.2, 0.5 on the Medium dataset.
The x-axis is the feature and y-axis the partial weight estimate. A white square indicates a match
and a black a mismatch.

61

5.4 Study of Ensembling Methods

5.4.1 Active Features based on λ for Tree Voting

Studies in Figure 5.1 of Section 5.2 shows multiples of the λ1 and λ2 and how those values
determine the number of non-zeros produced by CD on a small batch. However, the number
of active features after using an ensemble technique can vary based on technique and the
number of batches. For threshold voting, this is easily adjustable through the threshold
value. The adjustability of a threshold value does not translate over to the tree-based
voting format. To compensate for this lack of customization, we can adjust the initial input
weights to the tree ensemble method via the λ1 and λ2 values. This alternative method
indirectly varies the number of active features resulting from the voting scheme.

m
α

1 2 3 4 5 6 7 8 9 10 11 12

1 1200 1079 833 770 836 577 565 625 461 475 569 493
3 1396 1121 926 770 694 636 532 376 310 317 335 340
5 1423 1066 927 767 648 526 488 422 467 338 309 270
10 1505 1167 924 752 628 574 402 386 286 230 180 213
15 1488 1226 849 785 651 538 463 350 270 205 209 227
20 1267 911 616 451 350 257 204 153 122 135 97 74
50 1598 1232 928 726 555 432 386 268 228 218 194 149

Table 5.1: Number of active features for varying λ1 and λ2 for tree voting, and tree voting

Table 5.1 shows the average number of active features resulting from tree voting based
on the number of batches, m, and the multiplier, α, used for λ1 and λ2, which were prede-
termined in Section 5.2 for the Large dataset. As α increases, the number of active features
decreases. This is supported by the results from Tables A.1 and A.2, where using larger λ1

values results in sparser weight vectors.
For the remaining studies with the tree voting scheme, we use α = 10 for consistency

with the threshold voting method. However, this table points out that using α = 10 results
in around 200 active features for larger batches, where the weights considered as ground
truth have 400-500. It is possible that using a different α may result in more accurate
results when using the tree voting method.

5.4.2 Metrics for Ensembling Methods

We performed a comprehensive study of both the threshold voting (Section 4.4.2) and the
tree voting (Section 4.4.3) mechanisms on the Large dataset. For our threshold voting
study we used 8 values for number of batches (days) m = 1, 3, 5, 10, 15, 20, 50, 100 and the
threshold value t = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. For our tree voting study we used
the same set for m with the same λ1 and λ2 values as the threshold voting. Both voting
mechanisms use (λ1, λ2) = (e−4, e−1) as described in Section 5.2. We recorded the follow-
ing metrics:

1. Number of active features determined by the voting. The results are shown in Ta-
ble A.3.

2. The precision metric of the set of active features determined by the voting with
respect to the true set of active features from the ground truth. (precision = TP

TP+FP , where
TP = true positive and FP = false positive). The results are shown in Table A.4.

62

3. The recall metric of the set of active features determined by the voting with respect
to the true set of active features from the ground truth. (recall = TP

TP+FN , where FN = false
negative). The results are shown in Table A.5.

4. We record the metric MSEw−MSEw∗

(|y|)2
, where MSEv = 1

N ||y−Xv||
2
2 is the mean squared

error for a weights vector v and |y| = 1
N

∑N
i=1 |yi| is the average absolute value of the target

variable. Notice that since (|y|)2 and MSEw −MSEw∗ are on the same scale, this metric
is invariant under scaling and thus does not depend on units. The interpretation of this
metric is the difference between the MSE of the estimate w produced by threshold voting
to the MSE of the ground truth w∗ taken with the sign to account for whether the MSE
decreases or increases. For reference MSEw∗ = 0.00032973 and |y| = 0.012114.

5. The quantity |w−w
∗|

|w∗| , where w is the estimate given by step 8 of 6 and w∗ is the
ground truth. We can interpret this quantity as the following: how close the estimated
weights are to the ground truth with respect to the magnitude of the ground truth. We call
this metric the relative distance. The results are shown in Table A.7.

6. The quantity (w−w∗)T Σ(w−w∗)
MSEw∗ , where Σ = 1

NX
TX is the sample covariance matrix.

This quantity tells us the mean square error between the predictions given by w and w∗,
which are Xw and Xw∗ respectively, normalized by MSEw∗ , which makes the metric in-
variant under scaling. The interpretation of this quantity is how close the predictions are
given by w and w∗ are compared to the MSE of w∗. The normalization makes the results
more interpretable as the real values are very small.

7. We also measured the time it took to run MiniCD for each pair (t,m) and recorded
the times in Table A.9.

8. ROC curve for threshold voting for m = 100 batches shown in Figure 5.7. The x-axis
shows the False Positive Rate (FN

FN+TN) and the y-axis show the True Positive Rate or recall

(TP
TP+FN). In general, a ROC curve indicates the best performance at classification if the

orange curve peaks in the upper left corner. The dashed blue line shows the curve of no
predictive power (i.e., a random guess). Points above the diagonal represent good classifi-
cations, and points below represent bad classification results. The area below the curve is
the probability that a classifier will rank a randomly chosen active feature higher than a
randomly chosen zero feature. Thus, it is also an indicator of classification performance.

For robustness, we measured all of the metrics by repeating the random experiment for
each pair (m, t) 5 times and averaging the results.

5.4.3 Analysis of the Ensembling Studies

Here we present an analysis of the results from threhsold voting (Section 4.4.2) and tree
voting (Section 4.4.3). The full tables with our results are in the Appendix to Chapter 5 and
here we will simply reference them and analyze them. Tables A.3-A.9 provide insight into
the performances of both threshold and tree-based voting schemes. Each table displays a
metric of accuracy based on a range of m, where m represents the number of batches. When
selecting an individual batch, a measurement of accuracy can vary greatly due to the little
representation a batch has over the entire dataset. However, when using many batches,

63

Figure 5.6: Trade off between precision and recall for m = 100

this variability in the accuracy measurements should decrease as the summation of data
observed through many batches is more representative of the entire dataset. Furthermore,
as an ensembling method takes additional batches, the significance that an outlier set of
weights from one batch would have on the accuracy decreases.

1. Selecting the support of the ground truth
One result shown in Table A.3 is that as the threshold increases, the number of active
features decreases. This result supports our intuition as a higher threshold is more selective
and therefore, should select less active features. It is important to note that for m = 1, each
threshold value results in the same number of active features. There is no need for thresh-
olding since only one batch determines active v. nonactive weights. The different number
of active weights between the thresholding methods and the tree methods for m = 1 display
that the studies for tree voting selected batches are independent of the batches used for the
threshold voting results. In other words, these studies were computed separately. Regard-
less, the tree voting scheme shows results similar to t ∈ [0.3, 0.6]. Generally, the number of
active features increases for small threshold values and decreases for large threshold values
when the number of batches increases. This observation is supported by the description of
batch number influence on results in the previous paragraph.

To see how well the thresholding and tree voting methods capture the true support of
the ground truth, we compute the precision and recall metrics in Table A.4 and Table A.5
respectively. We notice that the precision tends to increase slightly for a fixed batch size as
we increase the threshold while the recall decreases more drastically. This relationship shown
clearer for m = 100 in Figure 5.6, where the lines for precision (blue) and recall (orange)
are visually inversely proportional. The green line shows the number of non-zeros (active
features). It is also important to note that the ”bump” for t ∈ (0.6, 0.9) in the precision is
probably due to noise because of the very few active features (around 10) and the fact that
batches are selected randomly. We notice that precision and recall are equal at a threshold
of roughly t = 0.33. Besides the apparent trade-off between precision and recall, we can also
notice in Table A.4 that almost all of the precision values are below 0.5, which indicates

64

Figure 5.7: ROC curve for m = 100

that threshold voting and tree voting does not do a great job at exactly capturing the true
support of the ground truth. To further investigate the ability of threshold voting to select
the true support, we can look at the ROC curve for m = 100 batches in Figure 5.7. In this
plot we fix m = 100 and vary t from 0 to 1. We see that the ROC curve of threshold voting
is slightly above the diagonal, but closer to the diagonal than to the upper left corner. This
trait of the plot indicates that thresholding voting has some predictive power in selecting
the true support, but it does only moderately well. We also see that the AUC is 0.65 which
is around 3 times closer to 0.5 than to 1. Based on that and our observations above from
Figure 5.6 and tables A.4, A.5 we can conclude that threshold voting does a moderate job
at predicting the true support, while its performance is far from optimal. As noted above,
the tree voting results are similar for those for threshold voting for t ∈ (0.3, 0.6), and thus
we can make the same conclusion for tree voting.

2. Approximating the ground truth weights
Next, we analyze how close this solution is to the ground truth in terms of the metric |w−w

∗|
|w∗| ,

shown in Table A.7. We interpret this metric as the relative distance. We notice that the
relative distance generally increases for fixed batch sizes as we increase t and converges to
1. This trend is expected since the higher the threshold t, the closer the solution given by
threshold voting is to the zero vector, which has a relative distance of 1. We also notice
that for all values of t plus the tree voting, the relative distance tends to ”mostly” decrease
as we increase the batch size m. This pattern is more pronounced for the lower values of
t = 0.1, 0.2, 0.3, 0.4 and starts to get less pronounced for t ≥ 0.5. This tendency is most
likely because when t ≥ 0.5 as we see in Table A.3, the number of active features left in
the model becomes very small and thus noise gets introduced as the batches are sampled
randomly. In general, most of the relative distance values are > 0.7, with some exceptions
for t = 0.1, 0.2 and m > 10, where the values range in 0.269−0.660. Notice that in the first
set of pairs (m, t) correspond to < 800 active features and the latter to 946 − 1523 active
features according to Table A.3. These results suggest that to get an estimate close to the

65

Figure 5.8: Plots of two accuracy metrics against time for Tree voting on different values for m

Figure 5.9: Plots of two accuracy metrics against time for threshold voting (t = 0.4) on different
values for m

ground truth, we need to include most of the total features in the model and cannot do it
by including a number of features that are close to the true number of active features (483).
This observation is consistent with the previous paragraph’s conclusion as threshold voting
and tree voting do not do a great job a selecting the supports.

3. Approximating the target
Furthermore in Table A.6 we show the metric MSEw−MSEw∗

(|y|)2
. As we can see, all the values in

the table are positive, and thus, none of our estimates from both voting schemes produces
a lower MSE than the ground truth. Moreover, since our metric is normalized and all
values in the table are < 0.02, we can conclude that in general, the difference between
the MSE produced by voting is close to the MSE produced by the ground truth. We can
also notice that the MSE produced by the threshold voting solution for a fixed batch size
tends to increase as we increase t. We expect this trend as a higher threshold value should
select fewer active features, and thus the solution gets farther from the ground truth. In
general we can we a pretty significant difference between t = 1 and t = 0.9 as the batch
size increases, where the values for m = 100 are 0.00009 and 0.01045 respectively. For
t = 0.3, the threshold value that best balanced the tradeoff between precision and recall
from Figure 5.7, we see that the values are in the range 0.0007-0.002. For the tree voting,

66

Figure 5.10: Plots of two accuracy metrics against time for threshold voting (t = 0.7) based on
different values for m

the values are in the range 0.002-0.007. These results indicate that both threshold and tree
voting do very well in approximating the ground truth in terms of MSE to the target, which
means that if our ground truth gives good predictions of the target, so will the solution from
MiniCD vice versa.

In Table A.8 we see the metric (w−w∗)T Σ(w−w∗)
MSEw∗ for different thresholds and the tree

method. This metric computes the mean squared error between the predictions given by w
and w∗. Based Table A.8, most values are > 1, except for the cases where t = 0.1, 0.2, in
which cases more than half of the features are left in the model. This trend indicates that,
for the most part, the predictions given by threshold voting and tree voting tend to be far
from the predictions given by the ground truth. However, this conclusion is counter-intuitive
with the previous paragraph’s conclusion, but a reasonable explanation would be that the
solutions from voting approximate the predictions from different sides. This solution would
explain why their MSEs from the target are close to each other, but the actual predictions
are not as close. We can also observe a general trend that the higher the number of active
features left in the model, the closer the predictions from threshold and tree voting are to
the ground truth predictions.

4. Runtime
Finally, in Table A.9, we measure the time it took to run threshold and tree voting. Notice
that the times are roughly invariant for different thresholds and the tree voting for a fixed
batch size. This invariance is because the time spent doing the actual voting and the
coordinate descent is negligible compared to the time it takes to load the batches and
compute the gram matrix and the inner products with the target. This result also explains
why for a fixed t or tree, the times increase linearly with the number of batches. For m = 1
batch it takes around 2.784 seconds and the times increase almost linearly to around 260
for m = 100.

To combine our observations from the three metrics above and the NNZ (Number of
non-zeros), we can look at Figures 5.8- 5.10. The three figures correspond to tree voting
and and threshold voting with threshold t = 0.1, 0.4. The x-axis shows the time, the y-
axis shows each one of the 4 metrics and each point corresponds to a different batch size
m = 1, 3, 5, 10, 15, 20, 50, 100. Firstly, we can see a general trend in all 3 plots that as the

number of NNZ increases, both metrics (w−w∗)T Σ(w−w∗)
MSEw∗ and MSEw−MSEw∗

(|y|)2
decrease (i.e. we

become more accurate) and when the number of NNZ decreases these metrics increase.

67

However, this trend happens in inverted fashion for t = 0.4 and tree versus t = 0.1. For

t = 0.4 and tree voting we see that generally both (w−w∗)T Σ(w−w∗)
MSEw∗ and MSEw−MSEw∗

(|y|)2
increase

with the batch size and NNZ decreases, while for t = 0.1 this metrics decreases and the
NNZ increases. We can also observe that the metric |w−w

∗|
|w∗| has an ”elbow” shape for t = 0.1

and t = 0.4 (Figures 5.10 and 5.9), which indicates a trade-off between runtime (number
of batches) and how close we are to the ground truth in terms of relative distance. Value
m = 5, 10, 15 around the ”elbow” seem to be the best choices if we solely want to optimize
the relative distance to the ground truth and also the runtime for t = 0.1, 0.4. We don’t
observe this ”elbow” shape for the tree voting. Instead we see an increase until m = 10
and a decrease afterwards. In this case as seen in the Figure 5.8 the best value should be
m = 1, because it achieves a slightly bigger relative distance only than m = 100 but it is
100 times faster.

5.5 Early Stopping Study

In Section 4.5, we introduced how we can reduce the computation of the duality gap by
either precomputing how many iterations CD will run for or by checking the duality gap
much later. After a thorough review of existing literature, all theoretical bounds for the
iterations of CD in both cyclic and random variants are too large to be of use. For instance,
the theoretical iteration bound of the random CD for the Large dataset is on the order of
millions, whereas we can converge in around 120 iterations.

Originally, we started checking the duality gap once the maximum absolute difference
between weight values was below 1e-4. With this value for the Large dataset, we can run
CD (random with replacement) in 0.77 seconds and 120 iterations. We check the duality
gap 120 times, meaning that the changes in weights do not exceed 0.0001. However, when
we change this tolerance to 1e-7, we achieve a time of 0.33 seconds and 120 iterations.
With this new tolerance, we only check the duality gap on average two times. So, from
the speedup, the duality gap took up around half of the computation. When we lower
the threshold even further to 1e-8, we run for too many iterations (200), but we still run
CD in 0.4 seconds, which is still much faster than the 0.77 seconds we had before. With
this method, we run the risk of starting to check the duality gap too late. However, the
computational cost of even 70 more iterations without checking the duality gap is not as
much as checking the duality gap too soon. So, at best, we can achieve a 2× speedup over
checking the duality gap too early.

5.6 Study of Feature Choice Methods

5.6.1 Configuration of Hybrid Feature Selection Method

The structure of a hybrid feature selection method described in Section 3.2.3 does not
specify what methods to conglomerate and when to switch from one method to another.
Because of this, we conducted several studies to determine an optimal hybrid configuration.

For the hybrid feature selection method implemented in this report, the switch between
one method to another occurs once the largest gradient value in magnitude reaches a certain
threshold. This gradient comparison method is superior to an alternative method comparing
the largest magnitude of the weight changes per iteration as it can switch methods mid-
iteration, where the largest magnitude of the weights can only be gathered once every

68

Threshold value Greedy −→ Cyclic Greedy −→ Rand w Greedy −→ Rand wout
Time (s) Time (s) Time (s)

1e-3 0.83 0.49 0.67
1e-4 0.83 0.49 0.67
1e-5 0.87 0.53 0.66
1e-6 0.85 0.71 0.79
1e-7 1.26 1.26 1.29
1e-8 1.83 1.85 1.83

Table 5.2: Average times of CD on Large dataset over 10 trials for various threshold values and
hybrid methods. Greedy −→ Cyclic = hybrid method starting with greedy and ending with cyclic
feature selection. This also applies to Greedy −→ Rand w and Greedy −→ Rand wout, where Randw =
random with replacement and Rand wout = random without replacement.

iteration, restricting any switch from one method to another to occur once an iteration has
finished.

Table 5.2 shows performance times of variant hybrid methods, all starting with greedy
feature selection switching the different basic feature selection methods at different thresh-
old values. The result shows that the performance times plateau as the magnitude of the
threshold value increases. As the threshold value increases, CD runs through fewer itera-
tions before the switch from a greedy to basic feature selection method occurs. This overall
decrease in time when using less of a greedy feature selection method suggests that calculat-
ing the gradient at each iteration is a bottleneck of the computation. The results also show
that using random with replacement results in the fastest hybrid computation times. The
studies in the following section will use the fastest hybrid method from Table 5.2; a feature
selection method alternates from greedy selection to random with replacement selection
with a threshold value of 1e-4.

5.6.2 Convergence study of feature selection methods

We conducted performance studies comparing overall time and iterations to converge for
the feature choice methods described in Section 3.2. The convergence for the CD method
was determined via the convergence of the dual gap value explained in Section 2.7 using
the optimal results from the early stopping study in Section 5.5. We don’t include ACF
methods described in Section 3.2.4 due to issues with float precision in calculating the
extremely small value f(βt) − f(βt+1) in equation 3.7. However, we predict that even if
properly implemented, ACF would not be faster than the cyclic and random methods due
to the dimensions of our data. Based on studies of ACF in [4], the method worked best for
when N ≈ p or N > p, which is not the case for the data provided by Aquatic.

69

Cyclic Rand w Rand wout Greedy Hybrid
Feature Choice Method

0

5

10

15

20

25

30

Nu
m

be
r o

f I
te

ra
tio

ns

Convergence Study Over 10 Trials (Small)
Iterations to Converge
Time to Converge

0.00

0.05

0.10

0.15

0.20

0.25

Ti
m

e
(s

)

(a)

Cyclic Rand w Rand wout Greedy Hybrid
Feature Choice Method

0

5

10

15

20

25

30

Nu
m

be
r o

f I
te

ra
tio

ns

Convergence Study Over 10 Trials (Medium)
Iterations to Converge
Time to Converge

0.00

0.05

0.10

0.15

0.20

0.25

Ti
m

e
(s

)

(b)

Cyclic Rand w Rand wout Greedy Hybrid
Feature Choice Method

0

50

100

150

200

250

300

350

400

Nu
m

be
r o

f I
te

ra
tio

ns

Convergence Study Over 10 Trials (Large)
Iterations to Converge
Time to Converge

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ti
m

e
(s

)

(c)

Figure 5.11: Convergence study showing number of iterations and overall time CD takes with various
feature choice methods on the Small (a), Medium (b), and Large (c) dataset. Within the plot,
abbreviations Rand w = random with replacement, Rand wout = random without replacmenet,
Greedy = Gauss-Southwell-s, Hybrid = Hybrid method using Greedy until certain threshold in
largest gradient value follow by cyclic

70

Figure 5.11 shows a comparison of the time and number of iterations required for various
feature selection methods to converge on each of the datasets. Within the studies for the
Small and Medium datasets, it is difficult to distinguish the fastest method out of cyclic,
random with replacement, and random without replacement. However, even on the smaller
datasets, it is clear that using greedy calculations slows down the overall time for CD to
converge. In terms of the fastest computational time, the results support the idea that it
is not worthwhile to increase each iteration’s computational complexity to lower iteration
count. Using the Large dataset provides more separation between the times of the three
basic selection methods. For the Large dataset, the hybrid method show results similar
to the random without replacement, but is slower to the fastest method, random with
replacement. While for these datasets and values for λ1 and λ2, it is apparent that random
with replacement is the fastest, this cannot be generalized for all λ1 and λ2 values nor for
all sizes of data.

5.7 Comparison of Naive and Covariance Update

Rules

We conducted a speed comparison study to compare the covariance update and the naive
update rules. We ran both algorithms on different sizes of randomly generated data, in all
of which the matrix X was “tall and thin” (N >> p). In this study, we did not compare
both algorithms for convergence because, as shown in Section 3.3, they implement the
same coordinate update rule. Therefore, we ran both update methods for 500 iterations
and compared their runtimes. Table A.10 shows the results of our study. As we can see
from the table, when we keep the number of features low compared with the number of
samples and increase the number of samples from 100 to 1,000,000, covariance tends to be
consistently much faster than Naive. This result supports our theoretical considerations in
Section 3.2. Based on these studies, we decided to use the covariance method as our main
foundation for further optimization of coordinate descent.

5.8 Front Heavy Covariance CD vs Standard Co-

variance CD

Section 3.4 described an alternative method of the covariance CD, front heavy CD. We con-
ducted a runtime comparison between the front heavy covariance method and the standard
covariance method on the Small dataset provided by Aquatic. The results from our study
are shown in Table A.11. As we can see in the table, the front heavy method takes more
time to prepare the data due to the gram matrix calculation in the beginning. However,
the overall time for the front heavy method (1.129s) is significantly smaller than the over-
all time for standard covariance (5.626s). From these results, we can conclude that Front
Heavy covariance is significantly faster than standard covariance in practice despite the
theoretical considerations in Section 3.3, which suggested that it may lead to unnecessary
computations and slower performance.

71

5.9 Thresholding

We used cross-validation on the Small dataset to tune the thresholding parameter discussed
in Section 3.6. We used the most recent 10 percent of the data as a validation set and the
rest 90 percent as a training set. We tried ten different thresholding parameter values and
plotted the validation loss in Figure 5.12. From our studies, it seems like a value of 0.02
seems to have the lowest validation loss.

Figure 5.12: Thresholding value vs cross-validation loss.

5.10 Loading Data Studies

There are two main ways to overcome the limit on the size of our dataset. We could improve
our hardware (i.e., increase our RAM capacity), or devise a way to load and process the
data in parts. We chose to go with the latter since it is more scalable than the former.
We devised two ways to calculate the gram matrix, where the faster one is described in
Section 3.7.2. Our first method was to load each column as needed and discard it once
we have computed the inner products with it. However, this method required loading in
columns more than once and is difficult to parallelize. The second method we developed
was to load in parts of the matrix X by row rather than column and sum up the partial
gram matrices as described in Section 3.7.2. The time to load and process X into a gram
matrix on our hardware is stated in Table A.12.

Our primary focus of the study is not how to load in data faster. We are researching
how to make the CD algorithm faster. However, to make our methods feasible for datasets,
we had to improve loading times to something reasonable (less than 1 hour). As seen in
Table A.12, we can achieve loading times below 15 minutes for every dataset, including the
Large dataset. Storing data in binary format and loading in from disk in binary format is
the fastest loading method because we do not have to convert from ASCII characters to
numbers such as in parsing a CSV file.

72

5.11 Lower Precision Studies

As described in Section 4.1, using lower precision can be beneficial. For the computations
in CD, pre-existing numerical linear algebra libraries immensely improve performance and
should be used rather than developing our own methods. However, this project’s hardware
configuration does not have any AVX512 instruction with support for half-precision. Fur-
thermore, the libraries with BLAS-like functions that we tested, Intel’s Math Kernel Library
MKL and Pytorch, do not have support for matrix operations with 16-bit float (float16)
precision but have limited alternatives for 16-bit integers (int16). With this in mind, we
looked at how lower precision calculations would influence the accuracy and computation
time of the main computation used in coordinate descent: matrix-vector multiplication.

Method Total Memory Used (GB) Overall Time (s)
MKL MatVect (Float32) 7.38 0.359

MKL MatVect (Int16) 3.72 0.361
Basic MatVect (Float16) 3.69 135.2

Pytorch MatVect (Float32) 7.44 0.334
Pytorch MatVect (Int16) 3.75 2.371

Table 5.3: Performance study over 10 trials using matrix of size 12, 500, 000 × 150 and vector of
size 150× 1. Other than the Basic MatVect (Float16) method which consists of two for loops, each
method includes the library and data type.

As shown in Table 5.3, we implemented several various matrix-vector multiplication
methods to find the most optimal configuration. Both MKL implementations and the Py-
torch method for single-precision 32-bit floats (float32) appear to have the fastest overall
times with a range of 0.03 seconds. While the Pytorch MatVect float32 method has the
lowest average time, several factors could account for the time disparity, including the stan-
dard deviation of the trials and slight differences in the hardware’s physical condition, such
as temperature. The main difference between these three methods is that the MKL MatVect
int16 implementation only used half of the memory that the other two methods required.
From these results, we decided to compare the performance of full CD implementations
using MKL’s float32 and int16 based matrix-vector multiplication methods.

Implementing the MKL int16 method of CD required slight adjustments to the data.
The provided data consisted of single-precision floating-point values. To convert these to
short integers, we scaled each term by a factor of 10N , where N is the number of digits
saved from the conversion.

Method Time (s) Memory Used (kB) Digits of Accuracy
Naive (Float32) 19.332 817,656 7-8
Naive (Int16) 120.613 707,744 3

Covariance (Float32) 0.577 817,868 7-8
Covariance (Int16) N/A N/A 0

Table 5.4: Performance study over 50 iterations for CD with single (Float32) and lower precision
(Int16) with both naive and covariance update rules on the Small dataset.

With the conversion of the data, we implemented int16 alternatives for CD with both
naive and covariance update rules. Table 5.4 displays the performance of using lower preci-
sion versus single precision. The MKL int16 MatVect function returns the resulting vector
with data type int32. Within the covariance update rule, calculating inner product values
results in large terms that exceed the limits of int32 when using the previously described
scaling method—exceeding this limit results in incorrect values for the inner products, in-
validating the accuracy of the results produced by the covariance lower precision method.

73

When comparing CD using naive update rule for the two variants of precision in Ta-
ble 5.4, it is apparent that the lower precision method is significantly slower and results in
less accurate predicted weights. In theory, storing data as int16 values should result in
half of the memory used to store float32 values. For these results, the memory usage for
the int16 method significantly exceeds half of the memory usage of the float32 method.
The high memory usage is because not all MKL functions used in CD have lower precision
alternatives, so various calculations are converted and stored as float32 values. It is im-
portant to note that using larger datasets with more columns will result in larger amounts
of memory saved when using lower precision. This increase in memory saved is because the
calculations converted and stored as float32 values will take less space than the memory
required to store the data.

5.12 Gram Matrix Estimation Study

In Section 4.2, we proposed a method of estimating the Gram matrix using Pearson Corre-
lation Coefficients between features, which are invariant across chunks of rows. Here we give
the results of a study of this method on Aquatic’s 17 million rows by 162 column Medium
dataset.

Let c refer to the proportion of rows of X in each chunk - i.e. (chunk size) = c · N .
Thus the smaller the value of c, the smaller the first chunk and the fewer rows we use to
calculate rab, from which we estimate the feature inner products of the rest of the chunks.
Table 5.5 below includes three additional metrics. First, “Time ratio” refers to the time to
estimate the Gram matrix divided by the time to calculate it fully. “Avg absolute weight
diff” refers to the quantity

1

N

N∑
i=1

|β̂(e)
i − β̂

(t)
i |

where β̂
(e)

is the weight vector predicted by the covariance optimizer using the estimated

Gram matrix and β̂
(t)

is the ‘ground truth’ weight vector predicted by the optimizer using
the true Gram matrix. “Loss function diff” refers to

f
(
β̂

(e))− f(β̂(t))
where f is the elastic net loss function. The latter two metrics measure how much less
optimal the solution is using the estimated Gram matrix.

c Time ratio Avg absolute weight diff Loss function diff
0.5 1.001 1.552 · 10−6 0.04
0.2 0.586 3.637 · 10−6 0.16
0.1 0.538 6.572 · 10−6 0.51
0.05 0.596 6.677 · 10−6 0.59

Table 5.5: Runtime improvement and accuracy loss of estimating the Gram matrix using a decreasing
proportion of the rows of X. As the amount of data used to make the estimate decreases, the time
saved generally increases but the method’s accuracy decreases

We can see that as c decreases, the time saved estimating the Gram matrix increases,
almost to the point where estimating saves half the time of calculating the Gram matrix

74

fully at c = 0.1. We can also see that the discrepancy in predicted weights and loss function
difference increase significantly. Note that the loss function difference is always positive,
indicating that the optimizer estimating the Gram matrix finds a less optimal solution.

It is important to note that, while the values in the table’s third and fourth columns
increase as c decreases, they remain relatively small. The average absolute value of an

element of β̂
(t)

is around 3 · 10−5. Thus at c = 0.05, the average weight difference is only
about 20% of the average weight, while this number is only 5% at c = 0.5. One caveat is
that Small individual weights may have their values change by significantly more than 20%.
However, these weights are Small and hence do not contribute significantly to the model.
The estimated Gram’s loss function difference is small compared to the ground truth loss
function’s value at the optimum, around 1200.

5.13 Preconditioning Study

In Section 3.8 we introduced the idea of preconditioning X with (XTX)−1/2 to encourage
faster CD convergence. In this section, we study the runtime performance of the precondi-
tioned updates introduced in Section 3.8.1.

We ran this study on our generated data to explore the effect on the runtime of varying
both N and p. Table 5.6 below compares the overall runtimes of the precondition-and-CD
procedure detailed in Section 3.8 to the front heavy covariance method described in Sec-
tion 3.4 using the weight change criterion discussed in Section 4.5 to avoid excessive duality
gap calculations. The two methods compute for the same problem for each N, p combi-
nation. Preconditioned CD ran for a fixed six iterations and thus never has to calculate
the duality gap, while standard front heavy CD ran around 15 iterations before converg-
ing. “Cond prep time” refers to the extra time required by the preconditioning method
to calculate (XTX)−1/2 and ZT y = (XTX)−1/2(XT y). “Cond CD time” is the runtime
of the subsequent CD algorithm using the preconditioned coordinate updates in equations
(3.23) and (3.24). “Cond total time” is simply the sum of the previous two columns - the
total runtime of the precondition-and-CD algorithm. This metric is comparable to “Front
heavy total time” - the runtime of the standard front heavy method, which excludes the
data loading and Gram matrix calculation (which the preconditioned method also must do)
and hence is just the CD algorithm runtime.

We can see from the last two columns of Table 5.6 that the preconditioned algorithm’s
runs slower relative to the standard front heavy algorithm as p increases, even running
100 times slower for N = 105, p = 300. Both the preconditioning’s prep and CD runtime
increase significantly with p. This matches our expectations, as (XTX) has dimensions
p × p and each of the p CD iterations must perform several O(p) operations, including
those in equations (3.18), (3.19) and (3.23). The majority of preconditioned CD’s runtime,
however, comes from sorting the c values calculated in equation (3.18). For example, of
the 0.22 seconds of preconditioned CD for N = 105 and p = 300, around 0.17 comes from
calling c++’s std::sort to sort the cs. Standard front heavy CD also runs more iterations
as p increases, but each iteration performs significantly less work than a preconditioned
iteration.

Conversely, the preconditioned algorithm runs faster relative to the standard front heavy
algorithm as N increases. In fact, the preconditioned method’s prep and CD runtimes
are theoretically invariant with respect to N , as N does not appear anywhere in either
procedure. Indeed, Cond total time stays roughly constant as N increases for all three p
values. On the other hand, the front heavy total runtime for each p increases by around an

75

Cond prep Cond CD Cond total Front heavy
N p time (s) time (s) time (s) total time(s)
105 50 0.001 0.004 0.005 < 0.001
105 100 0.003 0.018 0.021 0.001
105 300 0.012 0.218 0.230 0.002
106 50 0.001 0.004 0.005 0.006
106 100 0.003 0.018 0.021 0.008
106 300 0.037 0.219 0.256 0.01
107 50 0.001 0.004 0.005 0.094
107 100 0.005 0.02 0.025 0.113
107 300 0.04 0.254 0.258 0.130

Table 5.6: Study of runtime of preconditioned front-heavy covariance vs standard front heavy co-
variance method for various numbers of features and samples. “Cond prep time” refers to the time
to calculate (XTX)−1/2 and “Cond CD time” refers to the time to perform two iterations of the
preconditioned CD algorithm.

order of magnitude for every corresponding tenfold increase in N . This discrepancy is likely
due to the standard front heavy method’s need to calculate the duality gap to determine
convergence, as the duality gap calculation involves y, which has a length of N .

5.14 Warm Start Study

In Section 3.9, we introduced the idea of a warm start to speed up sequential CD. Here,
we present simulated results to show how a warm start produces a speedup for CD. To
determine how a warm start affected a rolling window CD, we studied its effects on the
Small dataset. First, we ran CD on the first 10% of the rows. Then, we added 10% of the
rows sequentially in the manner described in Section 3.9. The results of this experiment
are stated in Table A.13. As shown from the table, using a warm start for new data can
decrease the number of iterations we take in Coordinate Descent by half.

To determine how a warm start affected a distributed front-heavy CD, we studied its
effects on running CD for the Large dataset. The methodology is described in Section 3.9.2.
This experiment used a random without replacement feature choice. To create consistent
results, we ran CD ten times and averaged the results. The results of this experiment are
stated in Table A.14. As per the table, we can achieve a speedup of 1.5 once we have over
80% of the data loaded from a uniform distribution. Thus, we can utilize warm starts to
fill in any time between the fastest and slowest nodes.

5.15 Comparison with Scikit-Learn Elastic Net

Scikit-Learn (sklearn), a popular Python package for machine learning and optimization,
contains a solver for elastic net that uses CD, including covariance method support. How-
ever, sklearn only supports datasets storable within a machine’s RAM, and thus we can
only test the sklearn on the Small dataset. On the Small dataset, sklearn can run CD with
the same tolerance, lasso penalty, and ridge penalty in 2.66 seconds. Our implementation
can run CD on the Small dataset in 0.66 seconds. Thus, we achieve both faster speeds and
support for arbitrarily large datasets.

76

Chapter 6

Conclusions

This project aims to reduce the runtime of coordinate descent when solving elastic net
regression to predict stock prices using large financial datasets. In Chapter 5, we conducted
studies of the CD optimization methods described in Chapters 3 and 4. Our initial results
provide insight on methods and techniques that lower computational time for CD using
the Small, Medium, and Large datasets provided by Aquatic. Several methods, such as
MiniCD, early stopping, feature selection, front heavy covariance, and warm start, produced
successful results. Others, including lower precision calculations and preconditioning X,
were not as successful. In this section, we provide concluding paragraphs addressing each
of the methods explored above.

MiniCD and Ensembling Methods

We explored a general framework MiniCD. We tried averaging partial solutions and con-
cluded the averaging introduces a one-sided bias (Section 4.3.3). Furthermore, we explored
voting techniques. Section 5.4 showed preliminary studies of the threshold and voting
based ensembling methods implemented for this report. These studies demonstrate that
these methods do moderately well at selecting the true support of the ground truth. How-
ever, both voting methods can produce MSE, which is very close but slightly worse than the
MSE produced by the ground truth. This result indicates that we can use voting methods
to make predictions that perform almost as good as those produced by the ground truth.
We also saw that those predictions tend to not be very close to the predictions made by the
ground truth, but this is not contradictory to the previous result, as stated in the analysis.
We also showed that for certain values of t and tree voting there is an inverse relationship
between NNZ and two of our accuracy metrics (Metrics 4 and 6 from Section 5.4.2) and
that for certain values of t there is an ”elbow” shape between the runtime and relative
distance.

Early Stopping

Section 5.5 showed how reducing the duality gap computation can give us a large speedup.
At best, we could achieve a 2× speedup by checking the duality gap as little as possible.
Our results also showed that checking the duality gap too late still produced a speedup.
Thus, late checking is stable and does not have to be fine-tuned to achieve a speedup.

77

Feature Choice Study

Section 5.6 displays an analysis of each feature selection method on each of the datasets.
The results suggest that random selection with replacement is either the fastest or amongst
the fastest methods for each of the datasets.

Naive vs Covariance Update Rules

Based on our results in Section 5.7, we can conclude that the covariance update is signifi-
cantly faster than the Naive method on “tall and thin” matrices (N >> p). This result is
consistent with our theoretical considerations in Section 3.3, where we highlighted that the
covariance update does not do O(N) operations per coordinate, unlike the Naive update.
Based on that study, we decided to use the covariance method as our main foundation for
further optimizing CD.

Front Heavy Covariance

The front heavy method allows us to move computations of XTX and XT y to the front
of the algorithm before the main loop. In practice, as shown in Section ??, this method
is faster than the standard covariance method because it simplifies the code and allows
implicit parallelism from MKL when calculating the gram matrix and XT y. This method
also lets us utilize the chunk-loading method in Section 3.7 to load in large matrices beyond
our memory capacity.

Lower Precision

The results presented in Section 5.11 showed that lower precision implementations for CD
using both naive and covariance update rules resulted in significant accuracy loss and slower
computational performance. Furthermore, using lower precision on the smaller dataset did
not result in significant saves in memory. These results suggest that the downsides of using
lower precision on our hardware outweigh the only benefit, which is the memory save.

Estimating Gram Matrix

Estimating the Gram matrix with Pearson correlation coefficients yielded promising results,
as shown in Section 5.12. Estimation using the optimal number of rows cut the algorithm’s
total runtime almost half while sacrificing only marginal accuracy. However, these results
are based on only one dataset, and the method should be tested on other datasets to
verify its robustness. The Pearson method’s success motivates the exploration of alternate
estimation techniques that could reduce runtime even further.

Preconditioning

Section 5.13 shows mixed results for preconditioningX and solving the modified CD problem
described in Section 3.8. While the preconditioned CD algorithm converges in fewer itera-
tions, each coordinate update requires significantly more calculation than a corresponding
standard coordinate update and calculating (XTX)−1/2 adds overhead that grows rapidly
worse as p increases. The method shows signs of improvement over the standard method
for very large N , but it is likely only because it avoids calculating the duality gap to check
for convergence. Early stopping and other methods introduced in this paper to avoid the

78

duality gap calculation are simpler and do not see the same slowdown for larger p, so they
should be preferred.

Warm Start

Section 5.14 showed how a warm start could achieve a speedup for CD when applied in
using a rolling window through the data or when running CD on a distributed network.
With a rolling window, we were able to achieve 2×speedups. With a distributed network
model, we were able to achieve a 1.57 speedup. This speedup shows that we can utilize a
warm start for CD to fill in any computation gaps where CD is not running.

Scikit-learn Elastic Net Comparision

Section 5.15 showed how our CD implementation achieves significantly faster speeds than
sklearn. We also demonstrated that our method supports arbitrarily large datasets, whereas
the RAM limit bounds sklearn on a computer.

79

Chapter 7

Recommendations for Future Work

Most of this report’s results in Chapter 5 were designed around the specific hardware con-
figurations and the provided data from Aquatic. The conclusions from Chapter 6 should
motivate to look into certain optimization fields of CD, as the results may differ when us-
ing different data or hardware. To strengthen this report’s findings, one could explore the
following concepts.

Lower Precision

Our lower precision studies were extremely limited due to the hardware configuration used in
this project. The hardware did not support any computational speedup when using lower
precision, and numerical linear algebra libraries only offered support for short integers,
which lose too much accuracy for CD calculations. However, these issues disappear when
using newer CPUs and GPUs. It would be interesting to see how CD with lower precision
calculations compares to single-precision CD on hardware with a greater range of lower
precision support.

Feature Selection Methods

The feature selection methods covered in this report only scratch the surface of the re-
search methods out there. For example, we implemented the Gaussian-Southwell-s greedy
method, a commonly used greedy feature selection method with large amounts of literature
support. However, many other greedy variants are designed to tackle the high per-iteration
complexity when using a greedy method. Additionally, we only implemented the most com-
monly used cyclic and random methods, but future researchers could explore alternative
techniques.

Update Rules

The covariance update rule used to produce most of our results is best when X has the
property of N >> p, which is the case for the data provided by Aquatic. However, the
performance of this method deteriorates if this property of the data does not hold. Other
update methods may provide faster computational performance when using data where N
is not significantly greater than p.

81

Preconditioning

Further optimizations to the algorithm described in Section 3.8 could improve the pre-
conditioned algorithm’s performance relative to standard front heavy CD. Optimizing the
(XTX)−1/2 calculation could significantly decrease the overall runtime, especially for very
large p. Instead of determining (XTX)−1/2 exactly by first calculating (XTX)−1, then
using the spectral decomposition of (XTX)−1 to take its square root, one can estimate
(XTX)−1/2 using, for example, the method presented in [9]. Additionally, as discussed in
Section 5.13, most of the preconditioned CD algorithm’s runtime comes from sorting the
c values calculated in equation (3.18), so an alternative method of calculating h′(βk) that
avoids this sort will run several times faster, at least for the N and p values studied in
Section 5.13.

Methods of Testing Convergence

The duality gap is only used to determine convergence. However, if we could determine
beforehand how many iterations we would need to achieve convergence, then we would
not need to compute the duality gap. Existing literature yields an iteration upper bound
for both random and cyclic CD, but both of those upper bounds are too high to achieve
a speedup. So determining a tighter upper bound on iterations eliminates the need to
calculate the duality gap.

CD Performance on Computer Clusters

Many big data problems are computed on large computer clusters, providing large amounts
of parallelism and computational power to speed up calculations. For this project, the
computations took place on a small hardware configuration with extreme limitations for
parallelism. To not interfere with the MKL linear algebra functions that are most efficient
when using all four available CPUs, we restricted the remaining portions of CD to run in
sequential order, removing any possibilities of implementing block-based and other parallel
algorithms. However, using a computer cluster for CD provides new challenges such as
moving data throughout processes and parallel concepts that merit further exploration.

Ensemble Methods

For the ensembling methods used for the studies in this report, there was little to no
motivation in selecting these over other commonly used methods. Additionally, it is difficult
to determine when one ensembling method may produce more accurate results than another.
The results from the ensembling methods should merely provide a glimpse of how their
use can influence the overall accuracy of CD using portions of the data. To determine
an optimal ensembling method, future researchers should explore various models in more
detail. Additionally, our parameter studies were not extensive and only varied the number
of batches and threshold values for the threshold method. Exploring the effects of other
parameters could improve the performance of the ensembling methods.

Additionally, all tests using ensembling methods consolidated results from one data set.
Since ensembling methods only use chunks of the data, it makes sense that the weights and
predictions from ensembling are not as accurate as of the weights and prediction from the
entire dataset. However, we did not explore how CD performs for out-of-sample testing,
where training occurs on one dataset and testing is on another. One common issue with
out-of-sample testing is overfitting the weights to the training data. It is possible that

82

determining weights with the entire dataset results in overfitting the data, where ensembling
techniques may reduce or remove the overfitting entirely.

83

Appendix A

Tables from Chapter 5

λ1

λ2 1e0 1e-1 1e-2 1e-3 1e-4

1e-4 0.19 0.13 0.1 0.1 0.1
5e-5 0.37 0.27 0.25 0.2 0.2

2*e-5 0.6 0.49 0.44 0.44 0.44
1.43*e-5 0.7 0.56 0.48 0.46 0.46

1e-5 0.75 0.66 0.56 0.55 0.54
1e-6 0.96 0.93 0.91 0.88 0.87
1e-7 0.99 0.98 0.98 0.99 0.99

Table A.1: Proportion of non-zero coefficients in the ground truth for the Medium dataset across
different pairs of λ1 and λ2 regularizers.

λ1

λ2 1e-1 5e-2 1e-2 5e-3 1e-3 5e-4 1e-4

1e-4 0.04 0.03 0.03 0.03 0.03 0.03 0.03
5e-5 0.09 0.07 0.06 0.05 0.05 0.05 0.05
1e-5 0.37 0.33 0.27 0.26 0.25 0.25 0.25
5e-6 0.55 0.5 0.43 0.42 0.39 0.39 0.39
1e-6 0.86 0.85 0.78 0.75 0.73 0.73 0.72
5e-7 0.93 0.91 0.88 0.86 0.84 0.83 0.82
1e-7 0.98 0.97 0.96 0.97 0.95 0.95 0.95

Table A.2: Proportion of non-zero coefficients in the ground truth for the Large dataset across
different pairs of λ1 and λ2 regularizers.

m
t

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Tree

1 409 409 409 409 409 409 409 409 409 453
3 976 976 976 351 351 351 73 73 73 313
5 1292 750 750 345 345 105 105 20 20 358
10 1186 845 554 337 186 90 33 8 1 260
15 1470 946 710 340 227 83 40 3 0 256
20 1320 889 545 295 149 60 17 3 0 105
50 1523 1048 648 344 171 62 13 0 0 195
100 1484 989 581 301 151 50 5 0 0 185

Table A.3: Number of active features for varying thesholds and batch sizes in Large dataset, and
tree voting

85

m
t

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Tree

1 0.351 0.351 0.351 0.351 0.351 0.351 0.351 0.351 0.351 0.342
3 0.313 0.313 0.313 0.355 0.355 0.355 0.482 0.482 0.482 0.388
5 0.295 0.333 0.333 0.381 0.381 0.413 0.413 0.431 0.431 0.369
10 0.313 0.342 0.376 0.402 0.436 0.471 0.482 0.372 0.600 0.418
15 0.292 0.338 0.363 0.412 0.448 0.454 0.460 0.555 0.500 0.422
20 0.307 0.352 0.400 0.449 0.480 0.495 0.483 0.600 1.000 0.506
50 0.294 0.332 0.379 0.447 0.506 0.487 0.545 0.000 0.000 0.449
100 0.297 0.340 0.391 0.474 0.507 0.496 0.500 0.000 0.000 0.485

Table A.4: Support precision for varying thesholds and batch sizes, and tree voting, Large dataset

m
t

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Tree

1 0.298 0.298 0.298 0.298 0.298 0.298 0.298 0.298 0.298 0.320
3 0.633 0.633 0.633 0.258 0.258 0.258 0.073 0.073 0.073 0.252
5 0.791 0.518 0.518 0.273 0.273 0.090 0.090 0.018 0.018 0.273
10 0.769 0.599 0.432 0.281 0.168 0.087 0.033 0.006 0.001 0.225
15 0.889 0.662 0.534 0.291 0.211 0.078 0.038 0.004 0.000 0.223
20 0.840 0.649 0.451 0.275 0.148 0.061 0.017 0.003 0.000 0.110
50 0.930 0.722 0.509 0.319 0.18 0.063 0.014 0.000 0.000 0.181
100 0.913 0.698 0.471 0.296 0.159 0.051 0.005 0.000 0.000 0.186

Table A.5: Support recall for varying thesholds and batch sizes, and tree voting, Large dataset

m
t

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Tree

1 0.00293 0.00293 0.00293 0.00293 0.00293 0.00293 0.00293 0.00293 0.00293 0.00245
3 0.00068 0.00068 0.00068 0.00303 0.00303 0.00303 0.00759 0.00759 0.00759 0.00327
5 0.00024 0.00114 0.00114 0.0034 0.0034 0.00713 0.00713 0.00976 0.00976 0.00299
10 0.00035 0.00088 0.00185 0.00375 0.00603 0.00792 0.00895 0.0101 0.01041 0.00415
15 0.00011 0.00069 0.00129 0.00364 0.00492 0.00774 0.00863 0.01028 0.01045 0.00374
20 0.0002 0.00072 0.00169 0.00391 0.00604 0.0086 0.01 0.01038 0.01045 0.0066
50 0.00005 0.00051 0.00174 0.00388 0.00606 0.00895 0.0103 0.01045 0.01045 0.00551
100 0.00009 0.00059 0.00206 0.00432 0.00618 0.00942 0.01037 0.01045 0.01045 0.00592

Table A.6: MSEw−MSEw∗

(|y|)2
for varying thresholds and batch sizes, and tree voting, Large dataset

m
t

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Tree

1 1.062 1.062 1.062 1.062 1.062 1.062 1.062 1.062 1.062 1.010
3 0.691 0.691 0.691 1.088 1.088 1.088 1.089 1.089 1.089 1.045
5 0.451 0.766 0.766 1.028 1.028 1.069 1.069 1.025 1.025 1.040
10 0.579 0.753 0.902 0.980 1.023 1.050 1.022 1.010 1.002 1.081
15 0.283 0.618 0.764 0.958 1.015 1.054 1.035 1.006 1.000 1.042
20 0.398 0.660 0.844 0.969 1.011 1.005 1.016 1.000 1.000 1.054
50 0.269 0.578 0.825 0.953 1.010 1.013 1.006 1.000 1.000 1.040
100 0.269 0.519 0.840 0.886 0.978 0.999 1.000 0.999 1.000 0.981

Table A.7: |w−w
∗|

|w∗| for varying thresholds and batch sizes, and tree voting, Large dataset

m
t

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Tree

1 1.569 1.569 1.569 1.569 1.569 1.569 1.569 1.569 1.569 1.392
3 0.659 0.659 0.659 1.583 1.583 1.583 2.786 2.786 2.786 1.659
5 0.373 0.869 0.869 1.726 1.726 2.689 2.689 3.231 3.231 1.596
10 0.422 0.759 1.2 1.845 2.446 2.858 3.078 3.299 3.357 1.969
15 0.235 0.67 0.973 1.841 2.189 2.831 3.007 3.333 3.365 1.826
20 0.347 0.697 1.157 1.92 2.457 3.012 3.284 3.352 3.365 2.584
50 0.164 0.581 1.185 1.941 2.504 3.091 3.341 3.364 3.365 2.337
100 0.209 0.642 1.325 2.071 2.526 3.177 3.352 3.365 3.365 2.448

Table A.8: (w−w∗)T Σ(w−w∗)
MSEw∗ for varying thresholds and batch sizes, and tree voting, Large dataset

86

m
t

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Tree

1 2.784 2.784 2.784 2.784 2.784 2.784 2.784 2.784 2.784 2.784
3 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35
5 13.947 13.947 13.947 13.947 13.947 13.947 13.947 13.947 13.947 13.947
10 26.539 26.539 26.539 26.539 26.539 26.539 26.539 26.539 26.539 26.541
15 42.043 42.043 42.043 42.043 42.043 42.043 42.043 42.043 42.043 42.045
20 54.648 54.648 54.648 54.648 54.648 54.648 54.648 54.648 54.648 54.651
50 131.276 131.277 131.277 131.277 131.276 131.276 131.276 131.277 131.277 131.284
100 260.987 260.987 260.987 260.987 260.986 260.987 260.987 260.986 260.987 261.002

Table A.9: Time to run threshold voting for varying thresholds and batch sizes, and tree voting,
Large dataset

Num. features Num. samples Naive Time (s) Covariance Time (s)
10 100 0.004 0.002
10 1000 0.007 0.003
10 10000 0.01 0.003
10 100000 0.66 0.01
10 1000000 4.2 0.01
10 10000000 47.6 0.05
10 17281517 1100 1.24

100 100 0.8 0.1
100 1000 1.9 0.75
100 10000 6.5 0.8
100 100000 250 1.08
100 1000000 3300 5.03

Table A.10: Speed comparison between the covariance and naive update methods. We ran both
algorithms over 500 iterations and only compared their runtime on various sizes of “tall and thin”
matrices (N >> p)

Method Front Heavy Covariance Standard Covariance
Data Preparation Time (s) 0.839 0.553

CD Time (s) 0.167 5.073
Overall Time (s) 1.129 5.626

Number of Iterations 19 16

Table A.11: Runtime comparison between front heavy covariance and standard covariance on the
Small dataset

Method Dataset Overall Time (s)
Load by Column Small 2117.63
Load by Column Medium > 6 hours

Load by Row (50% loaded) Small 0.993883
Load by Row (100% loaded) Small 0.899703
Load by Row (35% loaded) Medium 20.4896
Load by Row (50% loaded) Medium 14.8203

Load by Row (0.2% loaded) Large 902.19

Table A.12: Performance study over 10 trials loading in and calculatingXTX from our Small (dimen-
sions 17,281,517 × 10), Medium (dimensions 17,281,517 × 162), and Large (dimensions 17,192,783
× 1768) datasets.

Fraction Iterations without Iterations with
of Rows Warm Start Warm Start

0.2 20 12
0.4 19 12
0.6 22 19
0.8 18 9
1.0 19 10

Table A.13: Performance study of using a warm start for rolling windows on the Small dataset

87

Fraction of Rows Iterations with Warm Start Iteration Speedup
0.20 106.2 1.14
0.25 102.6 1.84
0.33 107.9 1.13
0.50 97.1 1.25
0.67 93.9 1.30
0.84 77.5 1.57

Table A.14: Performance study of using warm start for a distributed network on the Large dataset

88

Appendix B

Abbreviations

ACF. Adaptive coordiante frequencies.

ACF-GPI. ACF with gradient probability initialization.

ASCII. American Standard Code for Information Interchange. ASCII is a character encod-
ing standard for electronic communication.

CD. Coordinate Descent.

CSV. Comma-separated values. Commonly used file format for storing data.

GS-s. Gaussian-Southwell-s greedy feature choice method.

IPAM. Institute for Pure and Applied Mathematics. An institute of the National Science
Foundation, located at UCLA.

MKL. Intel’s Math Kernel Library.

RIPS. Research in Industrial Projects for Students. A regular summer program at IPAM,
in which teams of undergraduate (or fresh graduate) students participate in sponsored team
research projects.

SGD. Stochastic Gradient Descent.

UCLA. The University of California at Los Angeles.

89

90

Selected Bibliography Including
Cited Works

[1] Z. Allen-Zhu, Z. Qu, P. Richtarik, and Y. Yuan, Even faster accelerated coor-
dinate descent using non-uniform sampling, in Proceedings of The 33rd International
Conference on Machine Learning, M. F. Balcan and K. Q. Weinberger, eds., vol. 48
of Proceedings of Machine Learning Research, New York, New York, USA, 20–22 Jun
2016, PMLR, pp. 1110–1119.

[2] O. Fercoq and P. Richtárik, Accelerated, Parallel and Proximal Coordinate De-
scent, arXiv e-prints, (2013), p. arXiv:1312.5799.

[3] J. Friedman, T. Hastie, and R. Tibshirani, Regularization paths for generalized
linear models via coordinate descent, Journal of Statistical Software, Articles, 33 (2010),
pp. 1–22.

[4] T. Glasmachers and U. Dogan, Accelerated coordinate descent with adaptive coor-
dinate frequencies, in Proceedings of the 5th Asian Conference on Machine Learning,
C. S. Ong and T. B. Ho, eds., vol. 29 of Proceedings of Machine Learning Research,
Australian National University, Canberra, Australia, 13–15 Nov 2013, PMLR, pp. 72–
86.

[5] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning,
Springer Series in Statistics, Springer-Verlag New York, 2 ed., 2008.

[6] S. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, An interior-point
method for large-scale `1-regularized least squares, IEEE Journal of Selected Topics in
Signal Processing, 1 (2007), pp. 606–617.

[7] X. Li, T. Zhao, R. Arora, H. Liu, and M. Hong, On faster convergence of
cyclic block coordinate descent-type methods for strongly convex minimization, Journal
of Machine Learning Research, 18 (2018), pp. 1–24.

[8] J. Nutini, M. Schmidt, I. H. Laradji, M. Friedlander, and H. Koepke, Co-
ordinate descent converges faster with the gauss-southwell rule than random selection,
in Proceedings of the 32nd International Conference on International Conference on
Machine Learning - Volume 37, C. S. Ong and T. B. Ho, eds., vol. 37 of Proceedings
of Machine Learning Research, Australian National University, Canberra, Australia,
13–15 Nov 2015, PMLR, pp. 1632—-1641.

[9] G. Pleiss, M. Jankowiak, D. Eriksson, A. Damle, and J. R. Gardner, Fast
Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimiza-
tion, arXiv e-prints, (2020), p. arXiv:2006.11267.

91

[10] P. Richtarik and M. Takac, Distributed coordinate descent method for learning
with big data, Journal of Machine Learning Research, 17 (2016), pp. 1–25.

[11] P. Richtárik and M. Takác, Iteration complexity of randomized block-coordinate
descent methods for minimizing a composite function, Springer-Verlag Berlin Heidel-
berg and Mathematical Optimization Society, (2012).

[12] H.-J. M. Shi, S. Tu, Y. Xu, and W. Yin, A Primer on Coordinate Descent Algo-
rithms, arXiv e-prints, (2016), p. arXiv:1610.00040.

[13] L. Shu, F. Shi, and G. Tian, High-dimensional index tracking based on the adaptive
elastic net, Quantitative Finance, 1 (2020), pp. 1–18.

[14] V. Smith, System-Aware Optimization for Machine Learning at Scale, PhD thesis,
Univeristy of California at Berkeley, 2017.

[15] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal
Statistical Society. Series B (Methodological), 58 (1996), pp. 267–288.

[16] R. Tibshirani, J. Bien, J. Friedman, T. Hastie, N. Simon, J. Taylor, and
R. J. Tibshirani, Strong rules for discarding predictors in lasso-type problems, Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 74 (2012), pp. 245–
266.

[17] S. J. Wright, Coordinate descent algorithms, Mathematical Programming, 151
(2015), p. 3–34.

[18] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, Parallelized stochastic gradi-
ent descent, in Advances in Neural Information Processing Systems 23, J. D. Lafferty,
C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, eds., Curran Asso-
ciates, Inc., 2010, pp. 2595–2603.

[19] H. Zou and T. Hastie, Regularization and variable selection via the elastic net,
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67 (2005),
pp. 301–320.

[20] H. Zou and H. H. Zhang, On the adaptive elastic-net with a diverging number of
parameters, Ann. Statist., 37 (2009), pp. 1733–1751.

92

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Problem and Motivation
	Approach
	Report Overview

	Mathematical Background
	Mathematical Optimization
	Least Squares Regression
	Lasso and General Penalized Least Squares Regression
	Elastic Net
	Coordinate Descent
	Stochastic Gradient Descent
	Determining Convergence through the Duality Gap
	Iteration Complexity of Coordinate Descent
	Data Statistical Properties and Synthesis

	Coordinate Descent Optimization Methods without Accuracy Loss
	Prior Related Work
	Feature Choice Rules
	Update Rules
	Front Heavy Covariance Method
	Numerical Linear Algebra
	Thresholding Rules
	Disk I/O
	Preconditioning X
	Warm Start

	Coordinate Descent Optimization Methods with Accuracy Loss
	Computer Precision
	Gram Matrix Estimation
	MiniCD and ensembling methods
	Ensemble Methods
	Early Stopping

	Results
	Hardware and Data Specifications
	Parameter Study for 1 and 2 values
	MiniCD exploratory data analysis
	Study of Ensembling Methods
	Early Stopping Study
	Study of Feature Choice Methods
	Comparison of Naive and Covariance Update Rules
	Front Heavy Covariance CD vs Standard Covariance CD
	Thresholding
	Loading Data Studies
	Lower Precision Studies
	Gram Matrix Estimation Study
	Preconditioning Study
	Warm Start Study
	Comparison with Scikit-Learn Elastic Net

	Conclusions
	Recommendations for Future Work
	Tables from Chapter 5
	Abbreviations
	Selected Bibliography Including Cited Works

