A DEEP LEARNING BASELINE FOR SPATIOTEMPORAL PRECIPITATION PREDICTIONS
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Background

Weather forecasting utilizing numerical methods is
computationally expensive due to the billions of de-
grees of freedom. Researchers seek to reduce com-
putation cost by supplanting numerical weather mod-
els, at least in part, through deep learning models.
This effort is hindered due to the difficulty in com-
paring deep learning models that are trained and
optimized on different datasets. In this project, we
develop a baseline toward a benchmark to facilitate
comparisons among deep learning architectures.

Benchmark Dataset

 Precipitation rates in 5-minute Iintervals within a
1024 x 1024 km? region of the U.S. from 2001-2011.

* For each time frame, the dataset splits the region
into 256 64 x 64 km?* tiles to create more samples.
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Figure 1: Region covered by benchmark dataset
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amounts of precipitation:
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Figure 2. Comparison of predicted and observed precipitation rates
(mm/day) for varying amounts of rainfall. Note different color scales.

* Predictions capture general spatial patterns.

* Model often underpredicts observed precipitation rates.
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Baseline Results

We trained the convLSTM baseline model using 4 years of
unbalanced training data (2001-2004) over a 64 x 64 km?* tile.
We then compared the the model’s predicted precipitation to
the observed precipitation over a 24 hour period for different
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Baseline Model Architecture

We use a convolutional long short-term memory
(convLSTM) model, which are designed for spa-
tiotemporal data as they are capable of learning
long-term dependencies with respect to location.
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Gates States

@ F = forget gate C = cell state
| = input gate H = hidden state
O = output gate

X = input state

Figure 3: convLSTM block
«convLSTM design consists of recursive blocks.
*C, H, X are input and output data for each block
 C carries important information between blocks.

*F, |, and O gates take input data and control what
information goes in and out of C.

Conclusions

 Defined benchmark dataset for precipitation rates.

* Implemented baseline model convLSTM that uti-
lizes benchmark data.

* Baseline model showed promise toward skill in
spatiotemporal precipitation prediction.
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