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Accurate forecasting of weather and climate depends on physics-based numerical simulations. These compu-
tational models in most cases create reliable forecasts. But they are computationally expensive due to the
billions of degrees of freedom in the physical models, and hence require some of the fastest supercomputers
in the world. Recently, deep learning techniques have shown significant promise in many scientific domains.
In an effort to reduce computational cost and potentially improve forecasting accuracy, researchers are now
exploring various deep learning architectures to work in combination with the current numerical models.
However, comparisons between deep learning models are difficult because they are trained and optimized on
different datasets. In this project, we develop a benchmark to facilitate comparisons among different deep
learning architectures. The benchmark includes a dataset of precipitation rates and an implementation of a
deep learning architecture applied to the dataset. We use data from the Multi-RADAR/Multi-sensor System
(MRMS) which contains precipitation rates in 5-minute intervals, for a 1 Mi sq. km region within South-
western U.S. from 2001 to 2011. The dataset is split into smaller tiles to create more samples, which allows
for scalability studies. With this dataset, we design a convolutional long short-term memory (convLSTM)
deep-learning architecture and defined this as our baseline model. We also provide training and prediction
results using the convLSTM on the benchmark dataset. Ultimately, this benchmark dataset and architecture
will be released to the community. Researchers can use them to explore new deep learning architectures and
can use the benchmark dataset to compare the performances of other deep learning models with our baseline
convLSTM implementation.

I. INTRODUCTION

Weather forecasts have become a necessity to every-
day life, whether it helps in choosing appropriate cloth-
ing for the day, or provides warning of incoming natural
disasters. Current forecasts are created using complex
physics-based numerical simulations. The most accurate
numerical simulations use billions of degrees of freedom,
and hence require the computational power of some of
the fastest supercomputers in the world. While current
forecast methods are extremely accurate in most cases,
there are many examples of where there still needs im-
provement. Before forecasts are even created, there are
observational and measurement-based errors from satel-
lites and weather stations. These small inaccuracies ac-
cumulate throughout the simulations and can result in
large amounts of unwanted error. Because of this, fore-
casting accuracy decreases as you forecast farther into the
future, as errors within forecasts accumulate over time.

Due to the limitations of current forecasting tech-
niques, researchers are exploring deep learning methods
to work in combination with numerical models. Several
deep learning architectures have shown promise in re-
gards to weather forecasting. In particular, there has
been moderate success with encoder-decoder convolution
neural networks (CNNs) such as UNets1,2. These struc-
tures are designed to capture spatial correlation through
down and upsampling of the image resolution. As shown
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in the cited examples, the UNets are also capable of cap-
turing spatial correlation across time. Another promising
deep learning architecture is the convolutional long short-
term memory (convLSTM) model3,4 that is designed to
combine the advantages of LSTMs and CNNs. More
specifically, LSTMs are strong for predicting patterns in
a time series, and CNNs are good with predictions using
images as they can track spatial patterns. One potential
issue with the convLSTM structure is that they are lo-
cation invariant due to the convolutional layer. This can
be problematic as natural motions in weather forecast-
ing such as rotations are generally location variant. Shi
et al. developed the Trajectory Gated Recurrent Unit
(TrajGRU) architecture5, where instead of having fixed
recurrent connections, the connections are dynamically
determined. Their initial studies showed improvement of
spatiotemporal predictions in comparison to more tradi-
tional convolutional-based networks.

While there are already several papers that discuss
deep learning techniques for weather forecasting, there
are little to no empirical comparisons between architec-
tures. This is because each paper presents a deep learning
architecture trained and optimized on a unique dataset.
One solution to this problem is to create benchmarks,
which can facilitate comparisons among different deep
learning architectures. One example of this is Weath-
erBench, a benchmark dataset for weather forecasting6.
The WeatherBench dataset consists of hourly data of
different atmospheric variables simulated over 40 years.
Similar to WeatherBench, this report proposes a bench-
mark dataset focusing on precipitation rates, rather than
the entire atmosphere.
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The remainder of this report is designed as follows.
Section II describes how the benchmark dataset is struc-
tured. Using the benchmark dataset, we define a base-
line model in Section III, which allows for comparisons
between different deep learning architectures. Section IV
discusses the predictions produced by the baseline model.
The results and overall findings of the paper are then
summarized in Section V.

II. BENCHMARK DATASET

For the proposed benchmark dataset, we use the Multi-
RADAR/Multi-sensor System (MRMS) dataset7. The
MRMS dataset provides precipitation rates (mm/hr) in
5-minute intervals over the entire U.S. from 2001-2011.
The benchmark dataset takes a 1024 × 1024 km2 por-
tion of the MRMS dataset located in Southwestern U.S.
Figure 1 shows the location of the dataset within the U.S.

FIG. 1. Precipitation rates (mm/day) for entire 1024 × 1024
km2 region on 08/14/2005

Within the dataset, the 1024 × 1024 km2 portion is
further divided into 256 64 × 64 km2 tiles. Creating
256 subtiles provides two advantages: (1) this results in
many smaller files, which can be advantageous to those
with memory-bound environments, and (2) based on how
training and testing datasets are created for machine
learning, the number of potential samples increases by
a multiple of 256.

One complication with creating 256 tiles within the
1024× 1024 km2 region is that the amount of precipita-
tion each tile receives is not equal. For this dataset, this
is observable when comparing tiles closer to the coast-
line in Lousiana versus. To account for this, we plotted
the probability density function as a line histogram over
precipitation rate (mm/hr) as shown in Figure 2.

When creating training and testing data using the
benchmark dataset, Figure 2 can be used to identify tiles
that most accurately represent the precipitation amounts
and rates of the entire 1024× 1024 km2 region.
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FIG. 2. Line histogram of precipitation rate (mm/hr) for
entire benchmark dataset (2001-2011).

III. BASELINE MODEL

As explained in Section I, there is a need for bench-
mark datasets for researchers to compare different deep
learning model architecture’s forecasting and nowcasting
performance. This section provides a baseline model that
can be comparable with future models optimized on the
benchmark dataset.

A. Deep Learning Architecture

Based on its success with precipitation predictions,
we design the baseline model using a convLSTM archi-
tecture. Additionally, there is strong code-based doc-
umentation for the proposed convLSTM architecture4,
which allows for a direct comparison when developing
the model. As explained in the introduction, convL-
STMs are designed for spatiotemporal data as they are
capable of learning long-term dependencies with respect
to location4. ConvLSTM’s are structured as recursive
blocks.

Figure 3 displays one of the convLSTM recursive
blocks. Each block takes in three inputs, the cell state
(C), the hidden state (H), and the input state (X). C car-
ries important information between each of the blocks,
and is the core of how the model learns. Within each
block, there are three gates, the forget gate (F), the in-
put gate (I), and the output gate (O). These control what
information from H and X should added to C. More speci-
fally, F controls what information should be removed
from the cell state, I controls what information in the
cell state should be updated, and O controls the values
within H for the next convLSTM block. More formal
definitions for each of the different components of each
convLSTM block are shown below, where ‘∗’ denotes the
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FIG. 3. Visual representation of convLSTM recursive block

convolution operator, ‘◦’ denotes the Hadamard product,
and t = 1, . . . , n, where n is the total number of convL-
STM blocks:

it = σ(Wxi ∗ Xt +Whi ∗ Ht−1 +Wci ◦ Ct−1 + bi)

ft = σ(Wxf ∗ Xt +Whf ∗ Ht−1 +Wcf ◦ Ct−1 + bf )

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt +Whc ∗ Ht−1 + bc)

ot = σ(Wxo ∗ Xt +Who ∗ Ht−1 +Wco ◦ Ct + bo)

Ht = ot ◦ tanh(Ct)

While a convLSTM can use an arbitrary number of
convLSTM blocks, our baseline model includes 3. Addi-
tionally, the baseline model includes a 10% dropout rate
between each convLSTM block to prevent overfitting as
well as padding=‘same’ such that the input dimensions
for each convLSTM block match the output dimensions.
Having a nonzero padding layer is beneficial as padding
can be interpreted as the state of the outside world, pro-
viding additional information of how clouds and other
causation of rainfall travel through a region4. Besides
the first and last layers, each layer uses 32 filters and a
kernel size of 3. Within the architecture, the last recur-
sive block, rather than outputting a sequence, returns a
single time instance. We then apply a final convolution
to this time instance to reduce the number of filters to 1,
so the output is comparable to the ground truth.

As a whole, the baseline model typically takes in 5D
tensors (batch size, time, rows, cols, channels) or the data
of a region over time and uses the information to predict
the region’s data for the next time frames. The output is
another 5D tensor (batch size, time, rows, cols, channels)
where time = 1 as the model only predicts the next time
frame. In both the input and output tensors, the number
of channels equals 1. However, within the model, this is
increased to 32.

B. Data Generation using Benchmark Dataset

For the baseline model, we need to define a training,
validation, and testing dataset. Using the benchmark

dataset, we defined a sample as five consecutive time
frames, where the first four time frames are considered
as the data fed into the model (x data), and the last
time frame is used to compare the output of the model
(y data). Any sample that was missing any of the five
consecutive time frames or had any NaN values within
the precipitation rates data was removed. Using this
method of sampling results in around 20,000 samples per
year for each tile. For the baseline model, the training
dataset consisted of samples from 2001-2003, the vali-
dation dataset consisted of samples from 2004, and the
testing dataset consisted of samples from 2005. Sampling
as such results in approximately a 60%, 20%, 20% split
for training, validation, and testing, respectively.

Based on the general distribution of precipitation rates
shown in Figure 2, any dataset that does not use prepro-
cessing techniques to balance samples with and without
precipitation will be extremely unbalanced, where the
vast majority of samples contain little to no precipita-
tion. From a scientific standpoint, the unbalanced ratio
between samples without and samples with rain makes
sense for the Southwest region of the U.S. as there are
many more instances where the is no rain compared to
instances when there is rain.

C. Weighted Loss Function

To account for the unbalanced data, we designed a
weighted mean squared error (WMSE) loss function.
This WMSE function is similar to the balanced MSE
and MAE functions optimized for the radar echo pre-
cipitation data used by Shi et al, where each pixel was
weighted based on precipitation intensity5. The WMSE
loss function is defined as the following:

WMSE =

∑n
i=1 wi(Yi − Ŷi)2∑n

i=1 (wi)
, (1)

where wi is the weight, Yi is the ground truth for the
precipitation rates, and Ŷi is the predicted precipitation
rates for each sample i = 1, . . . , n. To define the weight
of each sample, we designed a piece-wise function based
on Figure 4.

Figure 4 provides insight on the distribution of samples
in terms of number of pixels with nonzero precipitation
rates, n. The piece-wise function f(ni) is defined based
on ni in the y label for the ith sample:

f(ni) =


if ni ≤ 0.83t then wi = 285

if 0.83t < ni ≤ 0.93t then wi = 3

if 0.93t < ni ≤ 0.975t then wi = 2

if ni > 0.975t then wi = 1

(2)

where t is the total number of pixels in each sample, and
wi is the weight. The weights are based on the major
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FIG. 4. Box plot of percent of pixels within the 1024 × 1024
km2 region that have a nonzero precipitation rate for 2005.

points within the boxplot. We define samples that have
n smaller than the median as samples with virtually no
rain. These have a default weight of 1. The remainder
of samples either fall the third quartile group, the fourth
quartile group, or are classified as outliers. The weight
of the samples that fall in these ranges are either 2, 3, or
285 respectively. These values are based on the propor-
tion of data that falls within the respective range relative
to the data with virtually no rain. Using these weights
balances the influence of samples so the loss is not so
heavily influenced by the large number of samples with
virtually no rain.

IV. RESULTS

The model defined in Section III was implemented us-
ing Tensorflow’s library and was trained in a multi-GPU
environment using Tensorflow’s MirroredStrategy, a
standard distributive strategy8. Training and evalua-
tion used 4 NVIDIA Tesla V100-SXM2 GPUs with 16GB
high bandwidth memory. The model was trained over 50
epochs with a learning rate of 10−3 using the Adam op-
timizer.

With the trained model, we developed a direct 24-hour
precipitation prediction. Figure 5 shows a visual com-
parison of the observed and predicted precipitation rates
(mm/day) for three different amounts of precipitation:
light, medium, and heavy. Tables I and II show the dis-
tribution of precipitation rates for the observed and pre-
dicted data for the three days respectively. These tables
use the same categorization for the different precipitation
levels as the tables used in a previous related paper5.

For the light amount of precipitation on 08/16/2005,
the maximum observed precipitation rate is 89.1
mm/day. In comparison, the maximum predicted pre-
cipitation rate is 33.2 mm/day. However, the overall av-
erage precipitation rate between the two is much closer,
with an average of 15.6 mm/day and 24.2 mm/day for
the observation and predicted data, respectively. From a
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FIG. 5. Comparison of observed and predicted precipitation
rates (mm/day) for light, medium, and heavy amounts of pre-
cipitation. Note the different color scale for each plot.

visual perspective, we see in Figure 5 that the observed
precipitation rates are fairly low throughout, where there
is some increase along the left side, and the bottom right
corner is where the most precipitation is. Similarly, the
predicted precipitation rates capture the general patterns
both on the left side and the bottom right corner. How-
ever, these areas are visually more spread out.

For the medium amount of precipitation on
08/13/2005, we see that the maximum observed
precipitation rate of 175.8 mm/day is significantly larger
than the maximum predicted precipitation rate of 37.8
mm/day. On the other hand, the average precipitation
rate between the observed and predicted data, 22.9
mm/day and 23.9 mm/day, respectively, is extremely
close, with a 1 mm/day difference. Visually, in the
observed data, the most precipitation occurs in the
top left corner and is relatively sparse throughout the
remainder of the tile. Similarly, the predicted data
shows the most precipitation in the top left corner,
capturing the general spatial location of the event but
not the magnitude.

For the heavy amount of precipitation on 08/15/2005,
the maximum observed precipitation rate is 254.1
mm/day, whereas the maximum predicted precipitation
rate is 65.3 mm/day. When comparing the observed and
predicted data for the large amount of precipitation, we
see that the difference between the two maximums is the
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Precip. Rate (mm/hr) Low Proportion (%) Medium Proportion (%) High Proportion (%) Precipitation Level

0 ≤ x < 5 84.42 81.19 53.28 No / Hardly noticeable

0.5 ≤ x < 2 9.75 6.91 20.73 Light

2 ≤ x < 5 3.12 8.11 11.10 Light to moderate

5 ≤ x < 10 1.34 2.34 6.56 Moderate

10 ≤ x < 30 1.01 0.81 6.24 Moderate to heavy

30 ≤ x 0.36 0.63 2.10 Rainstorm warning

TABLE I. Precipitation rate statistics for light, medium, and heavy amounts of precipitation in the observed data averaged
based on each 5-minute interval

Precip. Rate (mm/hr) Low Proportion (%) Medium Proportion (%) High Proportion (%) Precipitation Level

0 ≤ x < 5 0 0 0 No / Hardly noticeable

0.5 ≤ x < 2 92.51 89.20 70.61 Light

2 ≤ x < 5 7.36 10.49 25.86 Light to moderate

5 ≤ x < 10 0.12 0.31 3.32 Moderate

10 ≤ x < 30 0.01 0.01 0.21 Moderate to heavy

30 ≤ x 0 0 0 Rainstorm warning

TABLE II. Precipitation rate statistics for light, medium, and heavy amounts of precipitation in the predicted data averaged
based on each 5-minute interval

largest out of all three comparisons. This difference sug-
gests that the model fails to capture high precipitation
rates. The model’s inability to predict high precipitation
rates is further evident in Tables 1 and 2. For this exam-
ple, the average precipitation rate between the observed
and predicted data was 78.5 mm/day and 42.1mm/day,
respectively. Similar to the other amounts of precipi-
tation, the difference between the average precipitation
rate is much smaller than the difference between maxi-
mum precipitation rates. In the observed visual, the most
precipitation occurs in the top right corner, but there is
also some precipitation in both left corners. We see the
same patterns for the predicted data, where the largest
amounts of precipitation are in the top right corner, fol-
lowed by smaller amounts in both left corners. When
comparing to the other samples, we see that the pre-
dicted data for the heavy amount of rain does a better
job of capturing the size of the cloud.

As previously mentioned, Tables I and II show the dis-
tribution of precipitation rates within the tile for the ob-
served and predicted data respectively. In the observed
data, as expected, as the amount of rainfall increases, the
proportion of pixels with higher amounts of precipitation
rate increases. This trend is also notable within the pre-
dicted precipitation proportions. However, the distribu-
tion of precipitation rates within the observed data is not
kept within the predicted data. This is because the model
does not adequately capture high precipitation rates and
often underestimates the rates. It is evident from the
tables that the model misses both the no-rain as well as
rainstorm events. This, in turn, results in a tendency
to predict prevailing light rain throughout the domain
during all three days.

V. CONCLUSIONS

In summary, we present a benchmark dataset for pre-
cipitation rates, described in Section II and provide
a baseline deep learning architecture that utilizes the
benchmark dataset, described in Section III.

Section IV shows that the model’s predictions cap-
ture both spatial and temporal characteristics of the data
though there are very large biases. From these examples,
it appears that as the amount of rainfall increases, the
difference between the maximum and average precipita-
tion rate of the observed and predicted data increases.
From a broader perspective, it appears the model strug-
gles to capture both high as well as very light precipita-
tion rates and generally underpredicts precipitation rate
when there is a large amount of rainfall. The model com-
pletely misses no-rain and rainstorm events.

With the moderate success in the baseline model, other
deep learning architectures can be optimized on this
benchmark to facilitate empirical comparisons. Further-
more, due to the abundance of data in the benchmark
dataset from the tiling technique, there is opportunity
for scalability studies. This opens doors for comparisons
not only based on prediction accuracy but also on com-
putational efficiency with of data. Scalability studies can
provide insight into how computational and cost require-
ments can be optimized for practical weather forecasts.
Ultimately, these comparisons can help provide motiva-
tion for weather forecasting to incorporate deep learning
methods.
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