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Abstract. Collecting and segmenting real world data for autonomous
driving tasks is financially and temporally expensive. The use of cheap,
quickly created synthetic datasets could solve this issue. Unfortunately,
the covariate shift between synthetic training data and real world testing
data significantly decreases the applicability of synthetic data. To po-
tentially improve the usefulness of synthetic data, we implement several
data augmentation techniques including traditional transforms, random
Copy+Paste, and style transfer. We apply these techniques to the com-
bined CARLA-Cityscapes data set and train a semantic segmentation
model based on the U-Net architecture.
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1 Introduction

Advancements in computer vision and artificial intelligence propel the devel-
opment of autonomous driving technology (ADT). Semantic segmentation, in
particular, is a key driver of improvements in ADT. Semantic segmentation re-
quires deep models with robust datasets. For our application, data can be col-
lected quickly and cheaply using driving simulators to produce synthetic data.
Despite recent improvements in the usefulness of synthetic data, current com-
puter vision models trained on synthetic data still perform poorly when applied
to real world data. This is due to the covariate shift problem.

Given the extremely varied nature of driving scenery and the time intensive
nature of human image segmentation, synthetic images likely must be used to
train successful semantic segmentation networks for driving scenes. As such, the
covariate shift problem must be dealt with. To attempt this, we built a U-Net
model which makes use of modern data augmentation techniques specific to the
semantic segmentation domain.

We applied two recent data augmentation techniques: Copy+Paste segmen-
tation overlay and cross-domain stylization. The former involves copying and
overlaying specific segmentations onto an image from a separate environmental
context. In theory, this increases model robustness in diverse environments. The
latter technique involves extracting environmental ”style” features and transfer-
ring them to the another image. We also applied some common data augmenta-
tion transforms.
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The remainder of the report is structured as follows: Section [2] provides in-
formation on the data set and describes some data processing steps. Section [3]
describes the deep learning U-Net architecture used for the semantic segmenta-
tion alongside the data augmentations explored. This is followed by Section
which provides performance information for the data augmentation methods
used with the model. The report discusses the results and overall conclusions in
Section Bl

2 Data Processing

2.1 Data Description

The provided training data is split into two sets. The first set consists of synthetic
RGB images collected with a wide range of weather and lighting conditions using
the CARLA simulator [2]. The different weather and lighting conditions include
the following: ClearNoon, HardRainNoon, CloudySunset, CloudyNoon, Default,
MidRainSunset, and SoftRainNoon. The second set includes a small subset of
data from the Cityscapes training data set, which is comprised of RGB images
of various driving scenes in European cities |1]. Overall, this dataset included
5600 samples, or 700 for each weather condition and 700 additional samples for
the Cityscape images. Throughout the rest of the paper, the entirety of this data
is referred to as the CARLA-Cityscapes data set. The CARLA-Cityscapes data
set contains 15 different segmentation classes (Figure [1).

cl Original Color New Color
ass R|G|B | R |G| B
Building 70 70 70 70 70 70
Fence 190 | 153 | 153 | 190 | 153 | 153
Pole 153 | 153 | 153 | 153 | 153 | 153
Sidewalk 244 35 232 | 244 35 232
Vegetation 107 | 142 35 107 | 142 35
Wall 102 | 102 | 156 | 102 | 102 | 156
. 128 64 128
Road / road line 571330 50 128 | 64 | 128
. . 250 | 170 | 30
Traffic light / sign 350 T390 ) 220 | 220 0
. 220 | 20 60
Person / rider 355 o o 220 | 20 60
Car 0 0 142 0 0 142
Truck 0 0 70 0 0 70
Bus 0 60 100 0 60 100
Train 0 80 100 0 80 100
. 0 0 230
y o .
Motorcycle / Bicycle 19 111 ) 119 | 11 32
Other Anything else 0 0 0

Fig. 1. Class labels for hybrid CARLA-Cityscapes data set
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2.2 Multiple RGB values for some classes

There are several segmentation classes to which multiple RGB combinations in
the segmentation map correspond. For example, RGB values (128, 64, 128) and
(157, 234, 50) both represent the ‘Road / road line’ class. To simplify our train-
time processing, we pre-process the CARLA-Cityscapes data set, replacing all
original colors with their corresponding new color (Figure .

2.3 Image Scaling

The CARLA-Cityscapes data set contains images of two different sizes: 2048x1024
and 1280x720. Our model requires images of the same size, so during training im-
ages of size 2048x1024 are randomly cropped to size 1820x1024 in order to match
the aspect ratio of the smaller images. They are then scaled down to 1280x720.
This method preserves the most amount of data from the larger images without
distorting them.

3 Methods

3.1 Model

For image segmentation, we implemented a U-Net [8]. The U-Net takes an image
and pushes it through multiple downscaling layers (the encoder), effectively low-
ering the image resolution to capture the context in the image. Then, the image
goes through upscaling layers (the decoder), which increase the image resolution
for precise localization. Dense skip connections are added so that small image
details do not get lost. For simplicity, consider each series of layers as a block.
There are two different block types: the downBlocks, for the encoder portion of
the model, and the upBlocks, for the decoder portion. The downBlocks consist
of convolutional layers with ReLLU activation functions, followed by max pool-
ing. The upBlocks consist of transposed convolutional layers and an upscaling
portion, which includes a concatenation of the corresponding downBlock (skip
layers), as denoted in the figure by the grey arrows (Figure [2)).

Section [2.1] describes the class configuration of this data set. To account for
the 15 different classes that exist within the data set, the model’s final convo-
lutional layer produces a tensor with dimensions (15, 1280, 720). We use this
tensor to calculate loss via a multi-class pixel-level cross-entropy function.

3.2 Data Augmentation Techniques

We implemented three primary data augmentation techniques: common data
augmentations, cross-domain style transfer, and random segmentation channel
overlay.
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Fig. 2. U-Net architecture (example for 32x32 pixels in the lowest resolution). Each
blue box corresponds to a multi-channel feature map. The number of channels is de-
noted on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations [8].

Unaugmented Image Image w/ Jitter Flipped Image w/ Jitter

Fig. 3. Types of traditional image augmentation techniques

Traditional Data Augmentation Techniques For a base level of data aug-
mentation, we implemented random horizontal images flips and pixel color jitters
(brightness, contrast, saturation, and hue) . This provided increased variety of
image colorings. This augmentation is done according to the following procedure:

Cross-Domain Stylization Following recent work on domain adaptation ,
we implement a style transfer network [4] on our data set to increase our quantity
of training data and deal with the covariate shift problem related to our synthetic
and real data.

We have two domains of data: real and synthetic images. We apply synthetic
styles to the real images and real styles to the synthetic images according to
the procedure defined in Figure[d]l See an example of cross-domain stylization in

Figure [5

Random Segmentation Copy+Paste We also use a Copy+Paste technique
to add variety to our data samples. When an image is sampled, we assign a
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Procedure for generating Cross-Domain styled images

Partition the data set into real images D" and synthetic images D?
For each image Dj in D":

Obtain random image Dj from D®

Create new image via style transfer using D; as the content image and Dj
as the style image
For each image D; in D?:

Obtain random image D from D"

Create new image via style transfer using D] as the content image and D}
as the style image

Fig. 4.

Content Image Style Image Output

Fig. 5. Example of cross-domain styled images with synthetic content image and real
style image.

50% probability to a Copy+Paste overlay augmentation occurring. When this
happens, we select a random image from the data set, select a random segmen-
tation layer to copy (e.g. cars or road), and copy this data from the random
image to our newly augmented image. See the procedure in (Figure @ and an
example in (Figure @

4 Results

In this section, we discuss the results of training and testing the U-Net on the
CARLA-Cityscapes data set with different combinations of the data augmen-
tation techniques described in Section [3.2] We train the U-Net with no data
augmentation (default case study), the U-Net with only traditional augmenta-
tion (traditional case study), and the combination of all three data augmentation
techniques (all-transforms case study) described in Section

4.1 Training Discrepancies

To save time during training, we performed the style transform on the entire
CARLA-Cityscapes data set and saved all of the new images. This doubled the
size of our all-transforms data set to about 11K samples. The all-transforms
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Procedure for generating Copy-+Paste image overlays

Select sample S with segmentation map Sseq and image Simg from the data
set.

Select sample R with segmentation map Rseq and image Rimg, at random, from
the data set.

Select index I at random, where I € {z|x > 0A 2z < N} and N is the number
of classes in the data set.

Copy all segmentation values corresponding to class I from Rseq to Sseg, Over-
writing values as necessary.

Copy all image values corresponding to class I from Ring t0 Simg, overwriting
values as necessary.

Fig. 6.

First Image Second Image New Image

Fig. 7. An example of an instance of Random Segmentation Copy-+Paste where the
car in the second image is copied into the first.

case study was trained on this modified data set which contains twice as many
samples as the un-styled data set for the default and traditional case studies.
For the cases that included either the traditional or overlay data augmentation,
we applied the data augmentations during training.

We randomly selected 80% of the data within each case study for their train-
ing data sets. Note that the randomly selected samples within the case study for
all transformations is different than the samples selected for the other studies.
For all of the U-Nets trained with different combinations of data augmentation
techniques, we used an initial learning rate of 0.001 with the Adam optimizer
@. The default and traditional case studies trained for 100 epochs and the all-
transforms case study trained for 165 epochs.

4.2 Testing Results

To best facilitate comparisons, the testing data sets for each case consist of a
random 20% selection from the CARLA-Cityscapes data set. Despite the dis-
crepancies between the different case studies, the results for each case study are
comparable since the testing data sets include the same samples. For each case
study, Table [1| displays the Intersection Over Union (IOU) percentages for each
class within the data set, the mean IOU, and the weighted mean IOU. For each
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of the classes, the model trained with no data augmentation techniques per-
formed best. Furthermore, despite training for 45 additional epochs, the model
trained with all data augmentation techniques barely outperformed the model
trained only with the traditional data augmentation. With the current selection
of data augmentation methods, the U-Net is able to best predict the more com-
mon classes, such as Road, Vegetation, and Other. All models fail to predict any
pixels of trucks, buses, trains, or bicycles, possibly due to data imbalance.

None Traditional All
Building 65.5% 59.4% 60.5%
Fence 49.9% 34.9% 43.2%
Pole 22.7% 17.3% 19.3%
Sidewalk 66.3% 50.2% 53.2%
Vegetation 80.0% 70.8% 75.2%
‘Wall 65.0% 38.1% 50.6%
Road 90.0% 82.4% 85.2%
Traffic light| 16.9% 3. 7% 11.9%
Person 26.7% 15.3% 2.7%
Car 51.3% 41.0% 47.0%
Truck 0% 0% 0%
Bus 0% 0% 0%
Train 0% 0% 0%
Bicycle 0% 0% 0%
Other 82.6% 78.7% 81.1%
mIOU 51.4% 44.7% 48.2%
wMIOU 78.9% 71.4% 74.1%

Table 1. Comparison between no augmentation, only traditional, and all data aug-
mentation methods. The table shows the Intersection Over Union (IOU) value for each
class, the mean IOU, and the weighted mean IOU.

These results certainly appear to be poor, as the data augmentations worsen
the IOU metrics. However, there are several reasons for the poor result with
data augmentations. For each case study, there is little distinction between the
samples in the training and testing data sets since they are randomly selected.
As such, it would make sense that the case studies that trained with fewer
similarities between the training testing data performed worse. We see this within
the results, where the two case studies that use data augmentations, and hence
train on data that shares less similarities to the testing data, did not perform
as well as the case study with no data augmentations. If these case studies were
tested on samples outside of the CARLA-Cityscapes data set, the results may
significantly differ such that the model trained with all data augmentations will
perform best. The case study with all data augmentation methods trained on
the largest variety of data, and thus has more potential to successfully generalize
outside of the CARL-Cityscapes dataset.
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5 Conclusions

In summary, we designed a U-Net deep learning architecture in order to perform
semantic segmentation on driving scenery. We implemented several data aug-
mentation techniques as described in Section including traditional augmen-
tations, overlay augmentations, and style augmentations. Our results in Section[d]
highlight the performance of the U-Net when trained with different combinations
of the data augmentations. We Predict how our model with data augmentation
techniques will perform on different data sets. Despite our results indicating that
the model without data augmentation performs best, for reasoning described
earlier, we suggest the U-Net trained with all data augmentation methods may
generalize better on data outside of the CARLA-Cityscapes domain.
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